问:求助:论文《微分方程在力学中的应用》相关资料及建议
- 答:微分方程在力学中的应用是非常广泛的。但是你的问题问得太不着边际了,很难回答。
微分方程分为常微分方程和偏微分方程。一般来说,后者应用更为广泛。
常系数常微分方程通常用来解一些最简单、最基本的动力学问题,例如速度、加速度、弹簧受力分析等等。例如:F=m*d(ds/dt)/dt就是牛顿第二定律。这些方程一般都可以解出。
最常见的非常系数常微分方程有贝赛尔方程、薛定鄂方程以及非线性薛定鄂方程等,这些方程一般应用在边界条件为圆柱或圆球形状的波的振动描述上。
偏微分方程是分析波动、二维受力分析等常见的方程了。
如果你要写论文,可以考虑以下两方面的应用:
1 牛顿定律分析
2 波动分析
问:论文选题理由(常微分方程在数学建模中的应用)
- 答:举例说明常微分方程模型是各类数学建模竞赛中常见的模型, 并通过列举一些参考文献来说明此类模型的建模方法和求解求解技巧不仅相同. 从而得出"常微分方程在数学建模中的应用"是值得研究的.
问:微分方程在经济学中的常作用应用1500字论文
- 答:1500字太夸张了,给你一下提示吧!
1、运用微分方程或微分方程组,可以描述经济系统的动态运行规律。
2、运用微分方程,可以分析经济系统的均衡与稳定性。
3、在微分方程中加入控制变量,将经济学问题转化为最优控制问题,可以分析经济系统的最优控制策略。
目前比较常用的微分方程在经济学中的应用有:(1)最早的哈罗德-多马经济增长模型、索罗模型等均属于微分方程(或转化为差分方程)模型。(2)后来的经济增长的世代交替模型等也是运用的微分方程。(3)技术扩散的巴斯模型,以及分析竞争洛克塔-瓦塔利亚模型也是微分方程模型。(4)亚瑟的路径依赖与锁定模型是随机微分方程。(5)布莱克-斯科尔斯期权定价模型,源于随机微分方程和变分法。(6)各种进化博弈模型中的复制动态方程是微分方程。