一、浅谈现行中学几何教材公理体系(论文文献综述)
杨国俊,丘文斯[1](2021)在《在初中数学“图形与几何”的教学中培养学生公理化思想——以“全等三角形的判定(第一课时)”为例》文中进行了进一步梳理我国现行义务教育课程标准及初中数学教材对公理化思想方法的教学要求相对较低,初中数学教材也鲜有对公理化方法的直接描述,但处处体现了公理化思想.笔者认为,作为数学中重要的思想方法,公理化思想方法不应该被淡化处理.本文以人教版初中数学"三角形全等的判定"一节为例,尝试改进"图形与几何"部分的教学,探究如何在教学过程中更好地培养学生的公理化思想.
陈梅娟[2](2021)在《小学与初中数学课程中几何内容的百年变迁研究 ——基于数学教学大纲?课程标准的视角》文中提出几何自从正式进入中国课堂以后一直是中小学数学学习的重要内容之一。它本身具有强大的功能和不可代替的教育价值,因而其内容一直是中外数学课程改革的焦点。当下,新一轮义务教育课程标准修订已经启动,且对课程内容的选择、安排提出了高要求。对于课程标准的修订,有专家、学者提出要借鉴外国有益的经验,同时也要回顾我国课程改革有益的经验和失败的教训。因此,对我国百年以来(1912—2012)小学与初中数学大纲及标准中几何内容的变迁研究具有现实意义。本研究采用定量研究与定性研究相结合,主要采用文献法、比较法、内容分析法,整理出百年以来小学与初中几何内容知识点并集,依据时代背景及大纲与标准颁布实施情况将1912年至2012年划分为三个时期:民国时期(1912—1948)、新中国成立至改革开放前(1949—1977)、改革开放以后(1978—2012),各时期则从大纲与标准背景介绍、内容广度、内容深度、内容组织进行分析。通过研究,得到以下主要结论与启示:结论:百年以来小学几何内容经历从“无”到“有”的转变,其知识模块具有稳定性和发展性,其知识点总数呈直线式上升,初中下移到小学的知识点越来越多且越来越难;初中几何知识模块变化具有稳定性、曲折性和发展性,新中国成立以后知识点总数呈正弦曲线变化。百年以来小学与初中几何内容深度在“提高”与“降低”之间重复变化。百年以来小学与初中几何内容整体呈螺旋式编排,且螺旋性越来越强,民国时期螺旋性等级为较弱、一般,新中国成立至改革开放前螺旋性等级为一般、较强,改革开放以后螺旋性等级为较强、最强。启示:(1)继续保留几何内容传统知识模块,合理增加现代化知识模块;(2)合理增加或删除几何内容基础知识;(3)几何内容知识点数应控制在一个合适的范围;(4)课程标准中应给出几何内容选学知识的教学方式;(5)几何内容应避免“窄而深”或“广而浅”的现象;(6)知识点具体教学目标行为动词表述应准确且不重复;(7)课程标准中应统一给出数学各部分内容教学总参考课时数;(8)几何内容组织继续遵循螺旋式编排;(9)几何内容组织应遵循学生的认知发展原则与知识的系统性原则相结合;(10)初中下移到小学的知识应符合学生的年龄特征和接受能力。
洪睿[3](2021)在《公理化方法在高中数学教学中的落地研究》文中研究表明公理化方法具有简明、有序、系统等特点,它不仅可以用来阐明我们所建立的理论的基础,更是具体数学研究的工具。公理化思想方法也是落实数学核心素养(特别是逻辑推理素养)的内在需求。因而,根据高中阶段学生的认知规律,如何有效地进行公理化思想方法的渗透与训练,以及公理化思想方法如何在高中数学教学中落地,就成为数学课程改革的一个重大的理论与实践问题。本文采用文献分析法、比较研究法等研究方法对公理化方法的发展历史、公理化方法与中国数学课程发展的关系进行了梳理。本研究认为,公理化方法的渗透与训练,是帮助学生理解和掌握数学知识、培养数学逻辑思维和发展数学学科核心素养的重要途径。理论上,本文对公理化方法在高中数学教学中的逻辑起点,落地的原则(遵循学生的心理和认知规律,渗透性原则,以发展学生的数学核心素养为核心),公理化方法在数学教学中的可操作性思路,以及如何实现公理化方法视域下数学教育的育人目标等重要的理论问题进行了系统深入的探究。实践上,本文以高中立体几何教学为例,探究几何概念教学和解题教学中可遵循的公理化思想方法教学范式,使得公理化思想和方法在真正意义上在数学教学实践中落地生根。
高飞[4](2021)在《人教、北师两版初中数学教材几何思维水平比较研究》文中研究说明该文旨在通过探究人教版和北师版初中数学教材“图形与几何”内容的几何思维水平有何异同,来考察我国现行广泛使用的两版初中数学教材符合学生几何学习认知规律的情况。为此,以人教版和北师版初中数学教材为研究对象,采用了内容分析法和比较法。设置如下研究问题:不同几何思维水平知识点有何异同?不同年级几何思维水平及变化趋势有何异同?不同主题几何思维水平有何异同?得出如下结论:两版教材均注重对“分析”思维水平的培养;两版教材在七年级和八年级均注重几何思维水平的发展;北师版教材相较于人教版更注重“视觉”思维水平的培养。给出如下建议:人教版教材应注重“视觉”几何思维水平的培养;两版教材均应注重在九年级上培养学生的几何思维;教师要根据学生的逻辑思维能力选取合适的教材。
张冬莉[5](2020)在《中国数学教科书中勾股定理内容设置变迁研究(1902-1949)》文中认为正如约翰尼斯·开普勒(Johannes Kepler)所言:“几何学有两件伟大的瑰宝:第一件是毕达哥拉斯定理,第二件是黄金分割。”勾股定理作为平面几何中最基础的定理,它是联系数学中数与形的第一定理,导致不可公度量的发现,揭示了无理数与有理数的区别,引发了第一次数学危机。勾股定理开始把数学由计算与测量的技术转变为论证与推理的科学。千百年来人们给出勾股定理的证明至今已有五百多种,是证明方法最多的一个定理,其中蕴含了大量丰富的数学思想和技巧。自徐光启翻译欧几里得的《几何原本》以来,中国不仅对古希腊算学史有了新的认识,又更深层次地了解勾股定理在中西文化中的价值。尤其在清末民国时期,勾股定理已成为中学数学教育的核心内容之一。本研究以1902-1949年中国中学数学教科书的勾股定理内容为研究对象,以文献研究法、历史研究法、个案分析法、比较研究法等为主要研究方法,将中国中学数学教科书在1902-1949年的发展历程依照学制和课程标准的颁布,分为清末时期(1902-1911)、民国初期(1912-1922)、民国课程纲要时期(1923-1928)、民国课程标准时期(1929-1949)四个发展阶段,旨在全面、系统、深入地研究勾股定理在中国中学数学教科书中的发展特点,分析影响及其变迁的因素,力求为当今的中学数学教科书中勾股定理的编写提供借鉴和启示。本研究从如下五个部分论述,具体内容如下:一、清末时期(1902-1911)中学几何教科书的勾股定理。这一时期,学制初订,中国的中学数学教育主要以学习日本数学教育为主,几何教科书的编写主要是翻译和编译日本以及一些欧美国家的几何教科书。首先从纵向上分析在这十年中几何教科书中勾股定理内容的证明方法以及定理表述上的变迁特点;其次横向的分别选取翻译日本和美国的几何教科书进行个案分析,从教科书编撰理念、编排形式、内容设置结构等维度进行了对比分析,以便从微观上详细了解这一时期数学教科书中勾股定理的变迁特点及教育价值。二、民国初期(1912-1922)中学几何教科书的勾股定理。这一时期中国的传统教育思想理念、制度模式和知识体系在西方文明的冲击下开始了艰难的转型,同时也影响几何教科书的发展。民国初期的教育继承了清末教育改革的成果,中学数学教科书的发展也日新月异。此时,自编教科书也在逐步成熟。这一时期,虽然中国自编几何教科书,通常是参考欧美教科书并加以适当筛选和增删,但是知识内容的组织与呈现,都有了显着的改进。但是其中勾股定理内容的编排上特点并不明显,还没有彻底摆脱之前教科书中的内容和形式,仍然有清末时期几何教科书的痕迹。分别选取该时期具有代表性的教科书《共和国教科书平面几何》、《民国新教科书几何学》以及汉译本《温德华士几何学》中勾股定理内容的编排设置进行详细对比分析。三、民国课程纲要时期(1923-1928)中学数学教科书的勾股定理。1922年的“新学制”颁布后,中小学实行六三三制。无论是教学方法还是教科书的编写,都在不同程度上有所变革,凸显着美国数学教育的影响。中学教科书把代数、几何、算术和三角等内容融合在一起混合教学,将原来的几何教科书架构完全打破。中国首次采用混合编写教科书的方法,不仅能使学生明白各科之间的内在联络,而且可以建构知识的统一体系。也正是在混合教学的风靡下,勾股定理内容的编排也因此受到极大的影响,无论是在章节的设置上,还是定理证明的方法、课后习题的设置上都与以往不同。故分别选取该时期具有重要研究价值的数学教科书《布利氏新式算学教科书》、《初级混合数学》、《新学制混合算学教科书》和《现代初中教科书几何》中勾股定理内容的编排设置内容特点进行详细对比分析。四、民国课程标准时期(1929-1949)中学数学教科书的勾股定理。在此阶段我国又进行了三次数学课程标准的修订,这一时期颁布的初中和高中课程标准中都要求学习平面几何。勾股定理内容则分别出现在初中和高中教科书中,但是由于对定理掌握的目标要求不同,故所在章节不同,导致使用的证明方法、表述方法和难易程度也不同。另外1932年首次设置了实验几何课程,明确实验几何教学的目标和要求,无论是在理解几何还是实验几何中都编排了勾股定理内容。虽然重视程度和教学目标都不同,但是分别从代数和几何的角度体现了勾股定理的重要性以及在教科书中有重要的地位。故选取《复兴中学教科书》和《实验几何教科书》中勾股定理内容编排进行详细分析。在该部分中,又将1912-1949年间中学数学教科书中勾股定理内容编排变迁进行了特点分析。五、以上研究中,在简要呈现各阶段的历史文化背景的同时,适当地介绍了代表性教科书作者的生平及数学教育贡献。六、结论。首先,从宏观和微观上归纳1902-1949年中国中学数学教科书中勾股定理编排特点;其次,分析了影响1902-1949年中国中学数学教科书勾股定理编排变迁的因素;再次,阐明了1902-1949年中国中学数学教科书勾股定理证明方法编排变迁的特点;最后,总结了勾股定理的编排变迁为当今数学教科书编写提供的启示与借鉴。综上所述,本研究主要以1902-1949年为时间域,研究了中国中学数学教科书中勾股定理的编排之变迁。根据各学制、课程标准(或课程纲要)对中学数学教科书的编写背景、编撰理念的要求不同,选取各阶段具有代表性的教科书中勾股定理的编排形式、证明方法等方面进行个案分析,总结了勾股定理内容编排之特点。厘清了1902-1949年中国中学数学教科书中的勾股定理内容的编排,揭示了勾股定理编排的变迁特点和影响变迁的因素,展示了清末民国时期中学勾股定理内容的设置、编排、内容选取等诸特点对当今教科书建议和教学改革的借鉴作用。
牟金保[6](2020)在《西藏职前初中数学教师基于数学史的专门内容知识个案研究》文中研究表明专门内容知识被描述为数学教学所特有的数学知识,而本文所研究的西藏职前初中数学教师基于数学史的专门内容知识就是属于专门内容知识的范畴。本研究主要关注西藏职前初中数学教师基于数学史的专门内容知识现状与HPM干预前后的变化情况。对于西藏职前初中数学教师基于数学史的专门内容知识的理论框架建构,目前尚无人进行研究,但有高中数学教师基于数学史的专门内容知识研究可供参考,也有国内外学科内容知识和教学内容知识方面的研究可供参考。由于西藏职前初中数学教师基于数学史的专门内容知识的理论框架,目前并没有现存的,为了得出本文理论框架的要素和针对西藏职前初中数学教师的研究流程,研究者针对15位专家进行了访谈,并利用模糊Delphi法通过三个步骤,对要素指标进行了筛选。研究者主要针对西藏职前初中数学教师基于数学史的专门内容知识建构了PT-HSCK九成分的九边模型,这九个知识成分维度分别为选择与引入的知识、比较与设计的知识、回应与解释的知识、探究与重演的知识、表征与关联的知识、编题与设问的知识、评估与决策的知识、判断与修正的知识、解决与运用的知识。同时,针对参与者的水平高低按照每个知识成分维度划分成五种不同的水平等级。为了更加具有针对性进行个案研究,研究者在HPM干预之前,调查了西藏地区初级中学在校学生、在职数学教师以及西藏地区职前数学教师数学史融入数学教学的现状与态度,同时调查了西藏职前初中数学教师基于数学史的专门内容知识现状。在前期调研的基础之上,研究者选定了12名西藏职前初中数学教师为本文个案研究对象,针对无理数的概念、二元一次方程组、平行线的判定、平面直角坐标系、全等三角形应用以及一元二次方程(配方法)6个知识点,设计了由24道客观题和6道主观题组成的PT-HSCK九成分五水平测试问卷。为了探讨HPM干预对西藏职前数学教师基于数学史的专门内容知识影响变化,研究者建立了HPM干预框架,并以该框架为指导对选定的12名西藏职前初中数学教师根据模糊Delphi法筛选6个知识点以及史料阅读、HPM讲授和HPM教学设计三个阶段分别进行HPM干预。在HPM干预之后,研究者根据问卷调查数据、访谈和作业单反馈分析了西藏职前初中数学教师基于数学史的专门内容知识水平变化情况。从总体结果来看,通过对PT-HSCK九个知识成分维度的前后测成对t检验发现,回应与解释、探究与重演、表征与关联、编题与设问、评估与决策、判断与修正、解决与运用这七种知识成分维度,后测的水平显着高于前测的水平;而选择与引入、比较与设计这两种知识成分维度,前后测水平无显着性差异,但后测的均值还是要略微高于前测。从藏族职前初中数学教师分析结果来看,藏族参与者的PT-HSCK中,回应与解释、探究与重演、表征与关联、编题与设问、评估与决策、判断与修正、解决与运用这七种知识成分维度,后测显着高于前测的水平;而选择与引入、比较与设计这两种知识成分维度,前后测水平无显着性差异。从汉族职前初中数学教师分析结果来看,汉族参与者的PT-HSCK中,回应与解释、探究与重演、表征与关联、编题与设问、评估与决策、判断与修正、解决与运用这七种知识成分维度,后测显着高于前测的水平;而选择与引入、比较与设计这两种维度,前后测水平无显着性差异,但后测的均值还是要略微高于前测。总之,HPM干预对西藏职前初中数学教师基于数学史的专门内容知识水平提高具有促进作用,同时本文也可以为西藏职前初中数学教师培养提供实施理论框架和有针对性推广的数据支持。
张彩云[7](2019)在《中国中学几何作图教科书发展史(1902-1949)》文中研究表明正如柏拉图所言,数学是从现实世界到理念世界的桥梁,图是用思维把握客观世界的空间形式和数量关系的工具。造型艺术中的设计图、各种工程中的设计图和数学中的图或图像,无论是简单还是复杂,其出发点都是作图,这就决定了几何作图的极端重要性。作图是一种掌握技能、养成习惯、锻炼思维和培养能力的过程。自1607年欧几里得的《几何原本》被译介到中国以来,逐渐地改变了中国的数学教育,中国人对几何作图有了崭新的认识。尤其在清末民国时期,几何作图已成为中小学数学教育乃至美术教育的核心内容之一。本研究以1902-1949年中国中学几何作图教科书及几何教科书中的作图为研究对象,以数学教育史为背景和视角,以文献研究法、历史研究法、分析法、比较研究法等为主要研究方法,将中国中学几何作图教科书在1902-1949年的近半个世纪的发展历程依照国家政体的变革、教育史上的大事件及其自身的发展趋势,分为清末时期(1902-1911)、民国初期(1912-1922)、民国中期(1923-1935)、民国后期(1936-1949),旨在全面、系统、深入地研究中国中学几何作图教科书在1902-1949年间的发展脉络,总结其发展特点,分析影响其发展的因素,力求为当今的几何教育及几何教科书的编写提供借鉴和启示。本研究从如下六个部分展开论述,各部分主要内容如下:一、清末时期(1902-1911)中学几何作图教科书。这一时期,学制初创,新式的学堂亟需与之相匹配的、合用的教科书,中国中学几何作图教科书的种类有引进、翻译、编译、自编四种形式,出版发行的总数超过20种,涉及的出版机构有13家,编撰者有20多位,在今日看来,可谓“百花齐放”。这些教科书风格迥异地表现出两种派系的各自风貌,国人自编本和非自编本透露出不同文化的差异性,即使是来自不同国家的非自编本之间也有明显的不同。所以,该时期从自编本和非自编本中选取了由孙钺自编的《最新中学教科书用器画》,闫永辉编译自日本的《新式中学用器画》,张廷金、余亮翻译自英国的《中学应用几何画教科书》为例,从教科书编撰理念、编排形式、内容结构、名词术语等维度进行了分析。二、民国初期(1912-1922)中学几何作图教科书。这一时期政体发生了变革,教育制度开始影响几何作图教科书的发展,继清末之后进入稳步发展阶段,虽然数量上有所减少,但质量更胜一筹。几何作图教科书在进入课堂以后经历实践的考验和淘汰,基本实现了从清末引进、翻译、编译到自编的嬗变。自编教科书的编撰能从本国国情出发,实事求是,在进入课堂后更深入人心,促进了几何作图的教学,也实现了其创新发展。本章在阐述教育制度及教科书编审制度的基础上,对这一时期出版的,在当时影响较大、再版次数较多、使用周期较长、着名出版社出版的,由黄元吉编撰的《共和国教科书用器画》、王雅南编撰的《新制用器画》、求是学社编撰的《新撰平面几何画法》进行了多个维度的考察。三、民国中期(1923-1935)中学几何作图教科书。1922年的“新学制”颁布后,随之新的教育规章制度出炉,在1923颁布的《中学算学课程纲要》中出现了几何作图教学的具体要求,1929颁布的《中学算学暂行课程标准》亦然,1932年颁布的《中学算学课程标准》中更有“在教授图形相关性质时与图画科联络或宜与用器画取得联系”、“几何作图题,要用器画好,力求整洁”等明确的规定,这在一定程度上对几何作图教科书的编撰、出版产生了影响,促进了中学几何作图教科书的繁荣发展。该部分在阐述课程标准及教科书编审制度的基础上,对这一时期出版的,在当时使用周期较长、影响较大、特色鲜明的,由冯编撰的《应用用器画教科书》、王济仁编撰的《平面立体几何画法》、薛德炯编译的《用器画法平面几何之部》和《用器画法立体几何之部》进行了详细的分析。四、民国后期(1936-1949)中学几何作图教科书。在1936-1949年间又进行了三次数学课程标准的修订,其中对几何作图的要求更详细、更具体。1937年抗战的爆发使得国民政府借机成立了“七联社”及后来的“十一联社”,结束了清末以来40多年教科书市场自由竞争的局面,实现了教科书的国定制,产生了国定本教科书。这对此时期的几何作图教科书产生了非常大的影响,导致仅有商务印书馆一家出版了几何作图教科书,还是针对职业学校编撰的。故此,该部分在概述当时社会背景和数学课程标准中几何作图的相关要求的基础上,对这一时期使用和出版的,由朱铣、徐刚合编的《平面几何画法》、《立体投影画法》、《简易透视画法》和王品端编撰的《平面几何画法》、《投影画法》进行了考察。五、1902-1949年中国中学几何教科书中的作图。该部分又分为两方面进行考察:一是几何教科书中的作图,分初中和高中;二是几何教科书外的作图研究,首先对该时期期刊论文中几何作图研究进行整体梳理,然后以着名数学教育家傅种孙为代表对其几何作图思想进行了个案分析。以期从侧面揭示影响几何作图教科书发展的因素。六、结论。首先,从宏观和微观上归纳了1902-1949年中国中学几何作图教科书发展过程中表现出的诸多特点;其次,分析了影响1902-1949年中国中学几何作图教科书建设和发展的因素;再次,提炼了1902-1949年中国中学几何作图教科书发展史研究的启示与借鉴;最后,提出了继本研究之后,可以进一步研究的问题。本研究主要解决了如下三个问题:第一,以1902-1949年为时间域,探讨了中国中学几何作图教科书的发展历程。第二,根据各学制、课程标准(或课程纲要)及教科书审定制度的颁布和实施,对几何作图教科书的编写背景、编撰理念、编写体例、编排形式、内容结构、名词术语、几何作图典型案例等方面逐一进行考察,总结了中国中学几何作图教科书在这一时期呈现出的宏观和微观特点。第三,考察了1902-1949年中国中学几何教科书中的作图内容,从侧面揭示了影响1902-1949年中国中学几何作图教科书发展的因素。
李海[8](2019)在《职前数学教师实践知能发展的设计研究 ——以三个初中几何定理证明教学为例》文中进行了进一步梳理实践知能是上海“青浦经验”发展到今天最核心的概念,是顾泠沅先生、鲍建生教授及其研究团队经过青浦实验、教师行动教育模式和教师发展指导者三个阶段40年左右的实践研究所形成的中国特色数学教育理论的重要组成部分。在顾泠沅先生、鲍建生教授及其团队关于实践知能研究的基础上,本文从词源学、哲学的视角出发,分析了与实践知能有关的词语“知识”、“能力”、“实践”的生活来源及其发展,分析了与这些词语相关的哲学观点以及各个不同哲学观点的共同之处。然后结合相关理论尤其是结合德国哲学家康德的四个问题,进一步探寻了数学教师实践知能的理论基础,重新界定了数学教师实践知能的概念。在鲍建生教授关于数学教师实践知能框架的基础上,对数学教师实践知能的框架进行了细化。在这个细化了的数学教师实践知能框架下,以《数学教育学》、《数学教学技能训练》和《数学课程标准解读与教材研究》为主要干预性课程,选择初中几何定理证明教学内容中的三角形内角和定理、勾股定理和垂径定理教学对某高校的2015级44名职前数学教师、2016级76名职前数学教师在2017年秋季学期和2018年秋季学期分别进行了一个学期的数学教师实践知能发展的干预性教学。本文以设计研究为研究的方法论,在细化了的数学教师实践知能框架基础上,编制职前数学教师实践知能问卷调查表和访谈提纲,采用问卷调查、访谈和讨论等收集研究数据的方法,对职前数学教师的实践知能发展进行实证研究,主要解决四个研究问题:(1)职前数学教师实践知能的现状是怎样的?(2)职前数学教师在学习干预课程中的教学理论时,对三个定理证明的教学进行了什么样的分析?这些分析对他们理解这三个定理的教学有什么帮助?(3)在数学教师实践知能模型框架之下,职前数学教师对研究者提供的三角形内角和定理、勾股定理和垂径定理教学设计文本案例的学习、思考和研讨,对职前数学教师理解三个定理的教学有什么作用?(4)经过数学教师实践知能干预性课程的学习和训练,职前数学教师实践知能产生了哪些变化?经过研究,得出以下主要结论:1.职前数学教师的数学教学实践知能现状不容乐观,但同时职前数学教师的数学教学实践知能并非空白,虽然职前数学教师没有真正做数学教师的经验,但他们在数学教师实践知能的知识基础、教学过程和支持系统领域都存在着一定的积累,这些积累来自于他们受教育的过程,包括中小学的教育过程和大学教育过程和部分职前数学教师做中小学数学家教的过程;职前数学教师通过接受中小学教育和大学教育尤其是数学教育,他们在教育教学理论、心理学理论、数学素养和信息技术方面已经有了一定的积累,但对数学课堂教学的教学经验尤其是课堂把控能力还比较薄弱;2.通过运用数学教师实践知能模型进行教学干预,职前数学教师的实践知能得到很大的发展,表现为实践知能的前后测存在显着性差异;3.实践知能模型应用于职前数学教师的培养具有一定的应用潜力,但在应用过程中需做好设计,即需要一个科学的教学干预过程;4.在实践知能干预性课程教学中既要重视理论的教和学,也要注重随时将理论与三个定理证明教学的实践相结合,在这一结合过程中,组织、引导职前数学教师对数学教学理论的学习、思考、分析和研讨,不但有利于他们理解数学教学理论,也有利于理解具体数学教学内容的教学;5.为职前数学教师提供比较成熟的三个定理证明教学的教学案例,并且组织他们对案例进行比较系统的学习、讨论、交流,对他们理解三个定理的证明教学具有积极的意义;6.通过数学教学理论学习、数学教学技能训练、设计教学、讨论和信心宣告,职前数学教师在实践知能的支持系统(信念与态度)得到提高。7.本研究设计的职前数学教师实践知能干预性教学,对提高职前数学教师的实践知能具有明显的作用。这些研究结论,对数学教师实践知能的研究、我国的数学教师教育具有一定的启示。最后,结合本研究的研究过程和结论,对高校数学教师教育数学专业任课教师和数学教育类课程任课教师给出了一些建议。并且对数学教师实践知能的未来研究进行了展望,提出了一些需要进一步研究的问题。本研究相信,为开拓新的数学教育研究广阔天地,建立具有鲜明中国特色的研究领域,本研究做出了些许的进展工作。
吕世虎[9](2009)在《中国当代中学数学课程发展的历程及其启示》文中指出进入21世纪,我国实施了新一轮基础教育课程改革,课程研究空前繁荣。相对于一般课程理论研究而言,我国数学课程理论研究则处于刚起步阶段。数学课程理论研究的不足使得中国数学教育界在面对基础教育数学课程改革实践提出的许多问题时显得无奈,对于数学课程改革的争论也是凭借个人经验有感而发,缺少理性的思考和理论的指导,常常陷入循环圈中。事实上,新一轮基础教育数学课程改革实践提出的许多问题在历次课程改革中都曾经出现过,从历史的角度审视和研究这些问题应当是建构中国数学课程理论的重要视角。本研究的论题“中国当代中学数学课程的发展历程及其启示”属于“中国数学教育史”的研究领域。该研究对于揭示中国数学教育的特征,建构中国特色的数学教育理论,解决基础教育数学课程改革中出现的问题具有重要意义。本研究主要运用历史研究法、文献法、比较法、文本分析法、访谈法等研究方法来进行问题的研究与讨论。本文拟研究的问题是“中国当代中学数学课程发展的历史给予我们什么样的经验和启示?”对于这个问题,又分解为三个子问题:中国当代中学数学课程发展的历程是怎样的?中国当代中学数学课程发展具有哪些特点?中国当代中学数学课程发展的历史对当今的数学课程改革有哪些启示?对于这三个子问题回答即是本研究的结论。本研究以数学教学大纲(数学课程标准)和数学教材的发展演变为线索,将中国当代数学课程的发展分为3个阶段:选择数学课程发展道路时期(1949—1957),探索中国数学课程体系时期(1958—1991),建立中国数学课程体系时期(1992—2000)。对每个阶段,从背景、事件及其影响三个方面梳理中学数学课程发展的历程。通过对当代(1949—2000年)代表性的数学教学大纲、主要的数学教材进行纵向比较,从课程目标(教学目标)、课程内容、课程选择性、课程编排方式等方面,梳理总结出这一时期数学课程发展具有如下特点:中学数学课程目标体系由只有一般目标发展成为一般目标和具体目标相结合的目标体系,基本上形成了一个多方面、多层次,宏观与微观相结合的比较完善的目标结构体系。对目标的陈述方式也经历了由抽象、模糊到具体、明确、可操作的过程;中学数学课程的知识领域和知识单元的数量呈“正弦曲线”变化态势;中学数学课程的选择性经历了由“一纲一本→多纲多本→一纲一本→多纲多本”的循环式发展;中学数学课程内容的整体编排方式经历了由“分科→混合→分科→混合”的循环性发展。平面几何受苏联几何内容处理方式的影响,采用论证几何体系,并成为50年中几何内容处理方式的主流。代数内容在各个时期都采用“数→式→方程→函数”的处理方式,也出现过采用“数→方程→式→函数”的处理方式。在上述基础上,对我国当今数学课程改革提出了如下建议:数学课程目标的表述应当继承重视“结果”的传统,“结果”目标与“过程”目标并重;数学课程目标的表述应当具体明确,将学段目标、年级目标、知识领域目标、知识单元目标、知识点目标结合起来;数学课程内容的选择应处理好稳定与发展的关系;数学课程内容的处理应恰当把握“理论与实践”的关系;数学课程内容现代化应与学生接受能力、教师的教学水平相适应;数学课程的选择性,应关注地区差异,分类设置课程,编写区域化教科书,处理好理想与现实的关系;数学课程内容的综合化要以主线统领,各知识领域内容相对集中,不宜太分散;几何内容编排应兼顾传统,采用实验几何与论证几何结合的方式为宜。本研究的创新之处是:以教学大纲、教材为线索,系统梳理了我国当代数学课程发展的历史,补正了已有研究中的一些缺漏;通过对教学大纲、教材的定量和定性比较研究,揭示了中国当代中学数学课程发展的特点;以史为鉴,对我国当今数学课程改革面临的一些问题提出了解决的建议。但在研究过程中,对于史料(特别是教材)的收集不全面,对教材的特点研究不够。一些结论还需要从理论上加以提炼。
刘岩瑜[10](2009)在《吉西略夫平面几何教材及其对中国几何教材影响的研究》文中提出吉西略夫(А.П.Киселев,1852-1940)是苏联最着名的数学教育家,他编着的中学数学教材是具有20世纪初数学教育改革理念的经典教材,这些教材在中国和俄罗斯都使用了很长时间,并有着重要而深远的影响。吉西略夫平面几何教材是其数学教材中的代表教材,从这本教材及其对中国几何教材的影响出发进行研究,一方面可以分析经典几何教材的优点,摒弃其弊端,从中吸取成功的经验和失败的教训。另一方面也可以结合新课程理念,积极开展几何教学研究,为几何教学的理论研究和实践提供历史发展的经验。本研究主要包括“绪论”、“吉西略夫平面几何教材的分析”、“吉西略夫平面几何教材对中国几何教材的影响与思考”三部分,首先对吉西略夫及其平面几何教材和研究背景进行了介绍。在此基础上,重点以吉西略夫编写的平面几何教材(1950年第13版,俄文原文)为研究基础,同时查阅研究文献作研究参考,研究和分析了吉西略夫平面几何教材的编排体系、教材的内容、早期几何课程改革思想理念的渗透、现代数学思想的渗透。然后进一步分析和探讨吉西略夫平面几何教材对中国几何教材的影响,重点是研究了全面学习苏联时期的影响和20世纪60年代到90年代初的影响;最后在本研究结束部分,以前面研究为基础对吉西略夫平面几何教材对中国几何教材的影响进行了初步分析总结,并对中国几何教材改革从历史角度提出了一些粗浅建议。从而对中国几何教材改革提供一些借鉴。
二、浅谈现行中学几何教材公理体系(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、浅谈现行中学几何教材公理体系(论文提纲范文)
(1)在初中数学“图形与几何”的教学中培养学生公理化思想——以“全等三角形的判定(第一课时)”为例(论文提纲范文)
一、引 言 |
二、现行初中教材中的几何公理系统 |
(一)现阶段的课程标准对公理化思想的教学要求相对较低 |
(二)根据学生特点修改几何公理 |
(三)几何知识中渗透公理化方法的思想 |
(四)初中几何公理化系统的不足之处 |
三、教学实例——人教版初中数学“三角形全等的判定(第一课时)” |
(一)“三角形全等的判定(第一课时)”的教材呈现 |
1.教材呈现过程 |
2.教材呈现过程存在的问题 |
(二)改进后的教学设计与实践 |
1.教学目标 |
2.教学重难点 |
(1)重点: |
(2)难点: |
3.教学方法 |
4.教学准备 |
5.教学过程设计 |
6.教学创新 |
四、结 语 |
(2)小学与初中数学课程中几何内容的百年变迁研究 ——基于数学教学大纲?课程标准的视角(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究背景 |
1.2 研究问题 |
1.3 研究意义 |
1.4 有关核心概念的界定 |
1.4.1 几何内容 |
1.4.2 知识模块 |
1.4.3 知识点 |
1.4.4 内容组织 |
第2章 文献综述 |
2.1 对数学教学大纲及课程标准的相关研究 |
2.1.1 国内纵向比较的相关研究 |
2.1.2 国内与国外横向对比的相关研究 |
2.2 小学与初中几何内容的相关研究 |
2.2.1 课程中对几何内容的相关研究 |
2.2.2 教材中对几何内容的相关研究 |
2.3 关于课程内容组织的相关研究 |
2.4 文献总体述评 |
第3章 研究设计 |
3.1 研究目的 |
3.2 研究内容 |
3.3 研究对象 |
3.4 研究方法 |
3.4.1 文献法 |
3.4.2 比较法 |
3.4.3 内容分析法 |
3.5 研究思路 |
第4章 阶段划分及维度界定 |
4.1 阶段划分 |
4.2 维度界定 |
4.2.1 内容广度 |
4.2.2 内容深度 |
4.2.3 内容组织 |
4.3 框架分析 |
4.4 百年以来几何内容知识点并集 |
4.4.1 初中 |
4.4.2 小学 |
第5章 民国时期“几何内容”的变迁(1912——1948) |
5.1 小学与初中数学课程标准背景介绍 |
5.2 几何内容广度 |
5.3 几何内容深度 |
5.4 几何内容组织 |
5.5 几何内容变迁特点 |
第6章 新中国成立至改革开放前“几何内容”的变迁(1949——1977) |
6.1 小学与初中数学大纲及标准背景介绍 |
6.2 几何内容广度 |
6.3 几何内容深度 |
6.4 几何内容组织 |
6.5 几何内容变迁特点 |
第7章 改革开放以后“几何内容”的变迁(1978——2012) |
7.1 小学与初中数学大纲及标准背景介绍 |
7.2 几何内容广度 |
7.3 几何内容深度 |
7.3.1 小学 |
7.3.2 初中 |
7.4 几何内容组织 |
7.4.1 大纲及标准中几何内容安排分析 |
7.4.2 螺旋式分析 |
7.5 几何内容变迁特点 |
第8章 结论与启示 |
8.1 研究结论 |
8.2 研究启示 |
8.3 研究反思 |
参考文献 |
附录1 |
附录2 |
致谢 |
(3)公理化方法在高中数学教学中的落地研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究背景 |
1.1.1 回应时代新要求 |
1.1.2 中国公民内在的需求 |
1.2 研究目的及意义 |
1.3 研究设计 |
1.3.1 研究思路 |
1.3.2 研究方法 |
2 文献综述 |
2.1 公理化方法概述 |
2.1.1 公理化方法的基本内容 |
2.1.2 公理化方法发展简史 |
2.1.3 公理化方法的辩证认识 |
2.2 公理化方法与中国数学课程发展 |
2.3 公理化方法与数学教育 |
2.4 文献述评 |
3 公理化方法在高中数学教学中的理论研究 |
3.1 高中数学知识体系的逻辑起点 |
3.2 公理化方法在高中数学教学中落地的原则 |
3.2.1 符合学生认知心理规律 |
3.2.2 教学中遵循渗透性原则 |
3.2.3 以发展学科核心素养为核心 |
3.3 公理化思想方法在高中数学教学中的可操作性思路 |
3.3.1 相关数学教育理论与公理化思想 |
3.3.2 简明、溯源、有序、系统、创新 |
3.4 公理化方法视域下的中学数学教育的目标 |
3.4.1 系统、全面地认识数学 |
3.4.2 学习并发挥数学思维的特长 |
4 公理化思想视域下的高中数学教学实践研究 |
4.1 概念教学研究——《平面》教学设计 |
4.2 解题教学研究 |
4.2.1 解题教学案例——求解题 |
4.2.2 解题教学案例——证明题 |
5 总结 |
参考文献 |
致谢 |
在读期间公开发表论文(着)及科研情况 |
(4)人教、北师两版初中数学教材几何思维水平比较研究(论文提纲范文)
摘要 |
Abstract |
1 前言 |
1.1 研究背景 |
1.2 研究目的及意义 |
1.3 研究问题 |
1.4 主要术语界定 |
1.5 创新点 |
2 理论基础及文献综述 |
2.1 理论基础 |
2.1.1 概念 |
2.1.2 理论背景 |
2.1.3 范希尔几何思维水平 |
2.2 文献综述 |
2.2.1 教材几何比较研究 |
2.2.2 范希尔理论研究 |
2.3 小结 |
3 研究方法 |
3.1 研究对象 |
3.2 数据收集与分析 |
3.2.1 数据收集 |
3.2.2 数据分析 |
3.3 研究思路及框架 |
4 结果与分析 |
4.1 不同几何思维水平知识点比较 |
4.1.1 “视觉”水平 |
4.1.2 “分析”水平 |
4.1.3 “非形式化演绎”水平 |
4.1.4 “形式化演绎”水平 |
4.2 不同年级几何思维水平比较 |
4.2.1 七年级 |
4.2.2 八年级 |
4.2.3 九年级 |
4.3 不同主题几何思维水平比较 |
4.3.1 图形的性质 |
4.3.2 图形的变化 |
4.3.3 图形与坐标 |
5 结论与建议 |
5.1 结论 |
5.2 建议 |
参考文献 |
附录 A 人教版七年级知识点几何思维水平表 |
附录 B 北师版七年级知识点几何思维水平表 |
附录 C 人教版八年级知识点几何思维水平表 |
附录 D 北师版八年级知识点几何思维水平表 |
附录 E 人教版九年级知识点几何思维水平表 |
附录 F 北师版九年级知识点几何思维水平表 |
攻读硕士学位期间发表学术论文情况 |
致谢 |
(5)中国数学教科书中勾股定理内容设置变迁研究(1902-1949)(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
1.1 问题提出 |
1.2 研究目的与意义 |
1.2.1 研究目的 |
1.2.2 研究意义 |
1.3 文献综述 |
1.3.1 国外研究现状 |
1.3.2 国内研究现状 |
1.3.3 研究现状评述 |
1.4 研究方法与思路 |
1.4.1 研究方法 |
1.4.2 研究思路 |
1.5 创新之处 |
第2章 清末中学数学教科书中的勾股定理 |
2.1 历史背景 |
2.1.1 “癸卯学制”的中学数学教育 |
2.1.2 清末中学数学教科书编译概况 |
2.2 翻译日本的几何教科书中勾股定理内容个案分析 |
2.2.1 编译者简介 |
2.2.2 编写理念及编排形式 |
2.2.3 勾股定理内容的结构 |
2.2.4 特点分析 |
2.3 翻译美国的几何教科书中勾股定理内容个案分析 |
2.3.1 编译者简介 |
2.3.2 编写理念及编排形成 |
2.3.3 勾股定理内容的结构 |
2.3.4 特点分析 |
2.4 清末教科书中勾股定理内容的结构及其特点(1902-1911) |
2.4.1 编写理念及编排形式 |
2.4.2 勾股定理内容设置的形式 |
2.4.3 勾股定理的内容表述之变迁及特点分析 |
2.4.4 勾股定理证明方法特点及教育价值分析 |
2.5 小结 |
第3章 民国初期中学数学教科书中的勾股定理 |
3.1 历史背景 |
3.1.1 “壬子癸丑学制”的数学教育 |
3.1.2 中学数学教科书编译概况 |
3.2 《共和国教科书平面几何》中“勾股定理”内容编排概述 |
3.2.1 编者简介 |
3.2.2 编写理念及编排形成 |
3.2.3 勾股定理内容的结构 |
3.2.4 特点分析 |
3.3 《民国新教科书几何学》中的“勾股定理”内容编排概述 |
3.3.1 编译者简介 |
3.3.2 编写理念及编排形成 |
3.3.3 勾股定理内容的结构 |
3.3.4 特点分析 |
3.4 汉译本《温德华士几何学》中的“勾股定理”内容编排概述 |
3.4.1 编译者简介 |
3.4.2 编写理念及编排形成 |
3.4.3 勾股定理内容的结构 |
3.4.4 特点分析 |
3.5 小结 |
3.5.1 勾股定理证明方法无明显差异 |
3.5.2 从面积和射影角度讨论钝角和锐角三角形的不同情形 |
3.5.3 习题数量参差不齐 |
3.5.4 对几何作图的认识逐渐加强 |
第4章 课程纲要时期的中学数学教科书中勾股定理 |
4.1 历史背景 |
4.1.1 “壬戌学制”下的数学教育 |
4.1.2 中学数学教科书编纂概况 |
4.2 混合教学数学教科书中的“勾股定理” |
4.2.1 《布利氏新式算学教科书》中“勾股定理”内容编排概述 |
4.2.2 《初级混合数学》中“勾股定理”内容编排概述 |
4.2.3 《新学制混合算学教科书》中“勾股定理”内容的编排概述 |
4.3 《现代初中教科书几何》中“勾股定理”内容的编排概述 |
4.3.1 编译者简介 |
4.3.2 编写理念及编排形成 |
4.3.3 勾股定理内容的结构 |
4.3.4 特点分析 |
4.4 小结 |
4.4.1 勾股定理内容分布在多个章节中 |
4.4.2 证明方法由一到多,割补法逐渐成为主要方式 |
4.4.3 由勾股定理向任意三角形推广 |
4.4.4 习题中理解型题目与作图题目相结合 |
第5章 课程标准时期的中学数学教科书中勾股定理 |
5.1 历史背景 |
5.1.1 中学算学课程标准下的中学数学教育 |
5.1.2 中学数学教科书编译概况 |
5.2 复兴中学教科书中“勾股定理”内容编排概述 |
5.2.1 部分编撰者简介 |
5.2.2 编写理念及编排形成 |
5.2.3 勾股定理内容的结构 |
5.2.4 特点分析 |
5.3 实验几何教科书中的勾股定理—以《初级中学实验几何学》为例 |
5.3.1 编撰者简介 |
5.3.2 编写理念及编排形式 |
5.3.3 勾股定理内容的结构 |
5.3.4 特点分析 |
5.4 课程标准时期教科书中勾股定理变迁之特点分析 |
5.4.1 数学史的融入 |
5.4.2 定理证明实验法与演绎法并重 |
5.4.3 体现从特殊到一般的归纳思想方法 |
5.5 民国时期数学教科书中勾股定理内容编排变迁特点分析(1912-1949) |
5.5.1 定理证明以方法为经,以教材为纬 |
5.5.2 三角形内对锐角或钝角之三边情况贯穿于教科书中 |
5.5.3 从正方形到任意相似图形 |
第6章 结论 |
6.1 清末民国中学数学教科书中勾股定理编排特点 |
6.1.1 数学教科书中定理命名的演变 |
6.1.2 作为小节内容编排在单元中 |
6.1.3 定理表述以“形的勾股定理”为主 |
6.1.4 结构体系独特,勾股定理的推广内容丰富 |
6.1.5 自编数学教科书中勾股定理史料贯彻爱国精神 |
6.2 影响中学数学教科书中勾股定理内容编排的因素 |
6.2.1 外部因素 |
6.2.2 内部因素 |
6.3 清末民国中学数学教科书中勾股定理证明方法编排之变迁 |
6.3.1 欧几里得证法始终贯穿在教科书中 |
6.3.2 证明方法由一变多,从演绎法过渡到拼补法 |
6.3.3 中国古代“赵爽弦图”仅在课后习题中出现 |
6.3.4 实验几何时期证法主要以综合法为主 |
6.3.5 清末民国时期中学勾股定理编排中存在的问题 |
6.4 清末民国中学数学教科书中勾股定理内容变迁的启示与借鉴 |
6.4.1 编排形式与内容体系应力求严谨 |
6.4.2 勾股定理内容编排重视趣味性、启发性与探究性 |
6.4.3 实验证明和理论证明相辅相成 |
6.4.4 从勾股定理到我们的思想 |
6.5 研究的不足与展望 |
参考文献 |
致谢 |
攻读博士学位期间的科研成果 |
(6)西藏职前初中数学教师基于数学史的专门内容知识个案研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究缘起 |
1.2 研究背景 |
1.3 研究问题 |
1.4 研究意义 |
1.5 相关概念界定 |
1.6 论文的框架结构 |
第2章 文献综述 |
2.1 藏族地区中小学数学教育研究现状 |
2.2 数学史融入数学教育的必要性 |
2.3 HPM研究的现状 |
2.4 学科内容知识的研究 |
2.5 HSCK理论框架的研究 |
第3章 研究设计与方法 |
3.1 研究对象 |
3.1.1 现状和态度研究对象 |
3.1.2 个案研究的对象 |
3.2 研究流程 |
3.3 研究方法 |
3.3.1 个案研究 |
3.3.2 问卷调查 |
3.3.3 访谈 |
3.4 研究工具 |
3.4.1 数学史融入数学教学现状与态度问卷 |
3.4.2 PT-HSCK问卷 |
3.5 数据处理与分析 |
3.5.1 数据编码 |
3.5.2 量化数据及其分析 |
3.5.3 质性数据及其分析 |
第4章 PT-HSCK理论框架的建构 |
4.1 PT-HSCK理论框架建构的动机 |
4.2 基于模糊Delphi法的PT-HSCK理论框架建构 |
4.2.1 评估指标 |
4.2.2 专家反馈资料之适度检验 |
4.2.3 初步重要的评估指标之筛选 |
4.2.4 相对重要程度之阈值 |
4.3 PT-HSCK的九种知识成分 |
4.4 PT-HSCK的五级水平划分 |
4.5 HPM干预框架 |
第5章 干预前现状与态度调查研究 |
5.1 西藏数学史融入数学教学的现状与态度 |
5.1.1 西藏数学史融入数学教学现状的调查 |
5.1.2 西藏在职初中数学教师态度的调查 |
5.2 西藏职前初中数学教师态度的调查 |
5.3 PT-HSCK的现状调查 |
第6章 职前初中数学教师的HPM干预 |
6.1 HPM干预的前期准备 |
6.2 HPM干预案例一:无理数的概念 |
6.2.1 史料阅读阶段 |
6.2.2 HPM讲授阶段 |
6.2.3 HPM教学设计阶段 |
6.2.4 HPM干预后的访谈与作业单反馈 |
6.3 HPM干预案例二:二元一次方程组 |
6.3.1 史料阅读阶段 |
6.3.2 HPM讲授阶段 |
6.3.3 HPM教学设计阶段 |
6.3.4 HPM干预后的访谈与作业单反馈 |
6.4 HPM干预案例三:平行线的判定 |
6.4.1 史料阅读阶段 |
6.4.2 HPM讲授阶段 |
6.4.3 HPM教学设计阶段 |
6.4.4 HPM干预后的访谈与作业单反馈 |
6.5 HPM干预案例四:平面直角坐标系 |
6.5.1 史料阅读阶段 |
6.5.2 HPM讲授阶段 |
6.5.3 HPM教学设计阶段 |
6.5.4 HPM干预后的访谈与作业单反馈 |
6.6 HPM干预案例五:全等三角形应用 |
6.6.1 史料阅读阶段 |
6.6.2 HPM讲授阶段 |
6.6.3 HPM教学设计阶段 |
6.6.4 HPM干预后的访谈与作业单反馈 |
6.7 HPM干预案例六:一元二次方程(配方法) |
6.7.1 史料阅读阶段 |
6.7.2 HPM讲授阶段 |
6.7.3 HPM教学设计阶段 |
6.7.4 HPM干预后的访谈与作业单反馈 |
第7章 干预结果及其变化分析 |
7.1 职前数学教师的总体变化分析 |
7.2 藏族职前数学教师的变化分析 |
7.3 汉族职前数学教师的变化分析 |
7.4 藏族与汉族职前数学教师的对比分析 |
第8章 研究结论与启示 |
8.1 研究结论 |
8.1.1 西藏数学史融入数学教学以及PT-HSCK的现状与态度 |
8.1.2 建立了理论框架以及干预框架 |
8.1.3 HPM干预对西藏职前初中数学教师的影响 |
8.2 研究启示 |
8.3 研究局限 |
8.4 研究展望 |
参考文献 |
附录 |
附录1 :西藏初中阶段数学史融入数学教学现状问卷(学生用) |
附录2 :西藏初中阶段数学史融入数学教学现状问卷(教师用) |
附录3 :西藏初中阶段数学史融入数学教学态度问卷 |
附录4 :PT-HSCK测试问卷 |
攻读学位期间发表的学术论文 |
致谢 |
(7)中国中学几何作图教科书发展史(1902-1949)(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
1.1 研究缘由 |
1.2 研究目的与意义 |
1.2.1 研究目的 |
1.2.2 研究意义 |
1.3 研究范围及研究内容 |
1.3.1 研究范围 |
1.3.2 研究内容 |
1.4 文献综述 |
1.4.1 国内研究现状 |
1.4.2 国外研究现状 |
1.5 研究方法 |
1.6 研究过程与思路 |
1.7 创新之处 |
第2章 清末时期(1902-1911)中学几何作图教科书 |
2.1 背景 |
2.2 学制初定及教科书编写 |
2.2.1 清末学制的初定 |
2.2.2 教科书编写概况 |
2.3 个案分析 |
2.3.1 孙钺编《最新中学教科书·用器画》 |
2.3.2 闫永辉编《新式中学用器画》 |
2.3.3 张廷金、余亮译《中学应用几何画教科书》 |
2.3.4 个案教科书内容分类量化比较分析 |
2.3.5 个案教科书作图题比较分析 |
2.3.6 个案教科书名词术语比较分析 |
2.4 小结 |
第3章 民国初期(1912-1922)中学几何作图教科书 |
3.1 背景 |
3.2 教科书审定及编写 |
3.3 个案分析 |
3.3.1 黄元吉编《共和国教科书·用器画》 |
3.3.2 王雅南编《新制用器画》 |
3.3.3 求是学社编《新撰平面几何画法》 |
3.3.4 个案教科书内容设置比较分析 |
3.3.5 个案教科书作图题比较分析 |
3.3.6 个案教科书名词术语比较分析 |
3.4 小结 |
第4章 民国中期(1923-1935)中学几何作图教科书 |
4.1 教育制度 |
4.1.1 背景 |
4.1.2 课程纲要中对作图的要求 |
4.2 教科书审定及编写 |
4.3 个案分析 |
4.3.1 冯编《应用用器画教科书几何画》 |
4.3.2 王济仁编《平面立体几何画法》 |
4.3.3 薛德炯编《用器画法平面几何之部》、《用器画法立体几何之部》 |
4.3.4 个案教科书内容设置比较分析 |
4.3.5 个案教科书作图题比较分析 |
4.3.6 个案教科书名词术语比较分析 |
4.4 小结 |
第5章 民国后期(1936-1949)中学几何作图教科书 |
5.1 教育制度 |
5.1.1 背景 |
5.1.2 课程标准中对作图的要求 |
5.2 教科书审定及编写概况 |
5.3 个案分析 |
5.3.1 朱铣、徐刚编《平面几何画法》、《立体投影画法》、《简易透视画法》 |
5.3.2 王品端编《平面几何画法》、《投影画法》 |
5.3.3 个案教科书内容设置比较分析 |
5.3.4 个案教科书作图题比较分析 |
5.3.5 个案教科书名词术语比较分析 |
5.4 小结 |
第6章 1902-1949年中国中学几何教科书中的作图 |
6.1 初中几何教科书中的作图 |
6.1.1 清末时期以《普通教育几何教科书·平面之部》为例 |
6.1.2 民国初期以《共和国教科书·平面几何》为例 |
6.1.3 民国中期以《现代初中教科书》为例 |
6.1.4 民国后期以《实验几何学》为例 |
6.2 高中几何教科书中的作图 |
6.2.1 清末时期以《最新中学教科书几何学·立体部》为例 |
6.2.2 民国初期以《共和国教科书·立体几何》为例 |
6.2.3 民国中期以《新中学教科书高级几何学》为例 |
6.2.4 民国后期以《复兴高级中学教科书立体几何学》为例 |
6.3 几何作图研究 |
6.3.1 期刊论文中的几何作图研究 |
6.3.2 着名数学教育家几何作图思想—以傅种孙为例 |
6.4 小结 |
第7章 结论 |
7.1 1902-1949年中国中学几何作图教科书发展特点 |
7.1.1 宏观特点 |
7.1.2 微观特点 |
7.2 影响几何作图教科书发展的因素 |
7.2.1 政治、经济、文化的影响 |
7.2.2 教育制度、课程标准、教科书审定制度的影响 |
7.2.3 教科书编撰者群体的影响 |
7.3 启示与借鉴 |
7.4 进一步研究的问题 |
参考文献 |
附录1 个案几何作图教科书目次 |
附录2 个案中学几何教科书目次 |
致谢 |
攻读博士学位期间发表的学术论文目录 |
(8)职前数学教师实践知能发展的设计研究 ——以三个初中几何定理证明教学为例(论文提纲范文)
摘要 |
abstract |
第1章 导论 |
1.1 研究背景 |
1.1.1 从我国教育的战略地位到教师在教育中的核心作用 |
1.1.2 从师范教育到教师教育的重要转型 |
1.1.3 我国职前数学教师培养概要及其主要问题 |
1.1.4 初中几何证明教学的重要性及其现实教学困难 |
1.1.5 重视实践性知识和能力的教师专业发展 |
1.2 主要概念界定 |
1.2.1 职前数学教师 |
1.2.2 实践知能 |
1.3 研究目的与意义 |
1.3.1 了解职前数学教师实践知能的现状 |
1.3.2 优化高等师范院校对职前数学教师培养的方式 |
1.3.3 为数学教师实践知能的进一步研究提供参考和借鉴 |
1.4 研究问题 |
1.5 论文结构 |
第2章 文献综述 |
2.1 实践知能 |
2.1.1 实践知能相关词语的词源分析 |
2.1.2 知识的哲学理论概览 |
2.1.3 知识及其分类 |
2.1.4 实践的哲学理论概览 |
2.1.5 教师知识及其分类 |
2.1.6 教师知识的实践取向 |
2.1.7 已有实践取向的教师知识研究 |
2.2 发展职前数学教师实践性知识与能力的模式、方法与措施 |
2.3 职前数学教师数学推理与证明教学知识研究 |
2.4 几何证明教学研究 |
2.4.1 什么是推理与证明 |
2.4.2 数学推理与证明历史发展的简要轮廓 |
2.4.3 数学证明的教育价值 |
2.5 本章小结 |
第3章 数学教师实践知能的理论框架 |
3.1 已有“知能”研究文献述评 |
3.2 数学教师实践知能的概念和结构 |
3.2.1 顾泠沅先生和鲍建生教授关注实践知能的缘起及基本研究思路 |
3.2.2 数学教师实践知能概念及其结构发展的简要脉络 |
3.2.3 已有数学教师实践知能概念及其结构述评 |
3.2.4 数学教师实践知能研究的展望 |
3.2.5 数学教师实践知能的理论基础 |
3.2.6 本研究的数学教师实践知能定义及其框架 |
3.2.7 对数学教师实践知能框架的进一步细化 |
第4章 研究方法与研究设计 |
4.1 研究对象 |
4.2 初中几何定理证明教学三个定理的选定 |
4.3 实践知能发展干预性课程的教学 |
4.3.1 干预课程的教学目标 |
4.3.2 干预课程的教学内容 |
4.3.3 干预课程的教学方法与教学措施 |
4.4 研究方法 |
4.4.1 设计研究概述及其与本研究的关系 |
4.4.2 本研究的研究问题及其子问题对应的研究方法 |
4.5 研究流程 |
4.5.1 设计研究的研究流程 |
4.5.2 第一轮、第二轮研究研究流程 |
4.6 研究工具 |
4.6.1 职前数学教师实践知能问卷调查表(前后测)的形成 |
4.6.2 职前数学教师实践知能变化情况访谈提纲的形成 |
4.7 问卷调查和访谈的具体实施 |
4.7.1 职前数学教师实践知能问卷调查的实施 |
4.7.2 职前数学教师实践知能访谈的实施 |
4.8 研究数据的收集 |
4.9 研究数据的分析方式 |
4.10 研究的信度、效度与伦理 |
4.10.1 研究的信度 |
4.10.2 研究的效度 |
4.10.3 研究的伦理 |
第5章 第一轮研究结果 |
5.1 职前数学教师实践知能的现状 |
5.1.1 职前数学教师对三角形内角和定理等三个定理及其证明的掌握 |
5.1.2 职前数学教师实践知能中知识基础的现状 |
5.1.3 职前数学教师实践知能中教学过程的现状 |
5.1.4 职前数学教师实践知能中支持系统的现状 |
5.2 职前数学教师在教学理论学习时对三个定理教学的分析 |
5.2.1 职前数学教师对青浦经验的四条数学教学原理的学习和理解 |
5.2.2 职前数学教师应用脚手架理论对三个证明教学的分析 |
5.2.3 职前数学教师学习弗赖登塔尔的教学理论时对三个定理教学的分析 |
5.2.4 小结 |
5.3 职前数学教师实践知能的变化 |
5.3.1 整体上实践知能的前后测差异情况 |
5.3.2 职前数学教师在实践知能各个子成分的变化 |
5.3.3 通过对个别研究对象的访谈看研究对象实践知能的变化 |
第6章 第二轮研究结果 |
6.1 职前数学教师实践知能的现状 |
6.1.1 职前数学教师对三角形内角和定理等三个定理及其证明的掌握 |
6.1.2 职前数学教师实践知能中知识基础的现状 |
6.1.3 职前数学教师实践知能中教学过程的现状 |
6.1.4 职前数学教师实践知能中支持系统的现状 |
6.2 职前数学教师在教学理论学习中对三个定理教学的分析 |
6.2.1 职前数学教师对青浦经验的四条数学教学原理的学习和理解 |
6.2.2 职前数学教师应用脚手架理论对三个证明教学的分析 |
6.2.3 职前数学教师学习弗赖登塔尔的教学理论时对三个定理教学的分析 |
6.3 职前数学教师对三个定理教学设计案例的学习和研讨 |
6.3.1 职前数学教师对三角形内角和定理教学设计案例的学习和研讨 |
6.3.2 职前数学教师对勾股定理教学设计案例的学习和研讨 |
6.3.3 职前数学教师对垂径定理教学设计案例的学习和研讨 |
6.3.4 案例学习、思考和研讨对职前数学教师理解三个定理教学的意义 |
6.4 职前数学教师实践知能的变化 |
6.4.1 整体上实践知能的前后测差异情况 |
6.4.2 职前数学教师实践知能各个子成分的变化 |
6.4.3 通过对个别研究对象的访谈看研究对象实践知能的变化 |
第7章 对两轮研究的总结 |
7.1 职前数学教师实践知能的现状 |
7.1.1 职前数学教师对三个定理内容及其证明掌握的现状 |
7.1.2 职前数学教师实践知能的现状 |
7.2 教学理论的学习、讨论和分析对掌握三个定理教学的价值 |
7.3 教学案例对职前数学教师理解三个定理教学的意义 |
7.4 两轮研究问卷数据合并后职前数学教师实践知能的变化 |
7.4.1 整体上实践知能的前后测差异情况 |
7.4.2 两轮问卷调查数据合并后职前数学教师实践知能各个子成分的变化 |
7.4.3 从两轮研究中访谈个别研究对象而发现研究对象实践知能的变化 |
第8章 研究结论与启示 |
8.1 研究结论 |
8.2 启示与建议 |
8.2.1 研究启示 |
8.2.2 建议 |
8.3 有待进一步研究的问题 |
8.4 研究的主要贡献 |
8.5 研究局限 |
参考文献 |
附录 |
附录1 :职前数学教师对其他同学三个定理证明的讨论提纲 |
附录2 :研究职前数学教师实践知能变化情况访谈提纲 |
附录3 :职前数学教师从业信心宣告书 |
附录4 :职前数学教师数学教学实践知能问卷调查表 |
附录5 :三角形内角和定理、勾股定理、垂径定理教学设计案例 |
1.三角形内角和定理教学设计案例 |
2.勾股定理教学设计案例 |
3.垂径定理教学设计案例 |
附录6 :职前数学教师三个定理证明教学设计案例学习思考提纲 |
附录7 :职前数学教师三个定理证明教学设计案例研讨讨论提纲 |
附录8 :职前数学教师干预性课程教学满意度问卷调查表 |
作者简历及在学期间所取得的科研成果 |
1.个人简历 |
2.参与或主持科研项目 |
3.发表论文 |
致谢 |
(9)中国当代中学数学课程发展的历程及其启示(论文提纲范文)
摘要 |
Abstract |
目录 |
第一章 引论 |
一、研究的背景及意义 |
(一) 数学教育学科建设的需要 |
(二) 基础教育数学课程改革与发展的需要 |
(三) 中国数学教育走向世界的需要 |
二、有关概念及范围的界定 |
(一) 当代 |
(二) 中学 |
(三) 数学课程 |
三、研究问题的表述 |
第二章 文献述评 |
一、文献收集的基本思路 |
二、收集到的主要文献及其述评 |
(一) 中国官方的课程文件 |
(二) 中学数学教材 |
(三) 数学课程研究的文献 |
三、文献述评的总结 |
第三章 研究方法与过程 |
一、研究方法 |
(一) 历史研究法 |
(二) 文献法 |
(三) 比较法 |
(四) 文本分析法 |
(五) 访谈法 |
二、研究过程 |
三、论文的结构 |
第四章 中国当代中学数学课程发展的历程 |
一、中国近现代中学数学课程发展的简要回顾 |
(一) 学习外国数学课程时期(1862—1928) |
(二) 探索本土化数学课程时期(1929—1949) |
二、选择数学课程发展道路时期(1949—1957) |
(一) 继承和改造原有中学数学课程时期(1949—1951) |
(二) 全面学习苏联数学课程时期(1952—1957) |
三、探索中国数学课程体系时期(1958—1991) |
(一) 探索和尝试建立中国数学课程体系时期(1958—1965) |
(二) 数学课程发展遭遇挫折时期(1966—1976) |
(三) 继续探索中国数学课程体系时期(1977—1991) |
四、建立中国数学课程体系时期(1992—2000) |
(一) 制定九年义务教育全日制初级中学数学教学大纲,编写"六·三"、"五·四"制初级中学数学实验教科书 |
(二) 制定全日制普通高级中学数学教学大纲,编写普通高级中学数学实验教科书 |
第五章 中国当代中学数学课程发展的特点 |
一、从课程目标看数学课程发展的特点 |
(一) 课程目标体系发展的特点 |
(二) 课程目标内容发展的特点 |
(三) 结论 |
二、从课程内容看数学课程发展的特点 |
(一) 中学数学课程中知识领域变化的特点 |
(二) 中学数学课程中知识单元变化的特点 |
(三) 结论 |
三、从课程选择性看数学课程发展的特点 |
(一) 从教学大纲(课程标准)层面看数学课程选择性的特点 |
(二) 从教科书层面看数学课程选择性的特点 |
(三) 结论 |
四、从课程编排方式看数学课程发展的特点 |
(一) 从宏观层面看数学课程内容编排方式的特点 |
(二) 从微观层面看数学课程内容编排方式的特点 |
(三) 结论 |
第六章 中国当代中学数学课程发展的历史对当今数学课程改革的启示 |
一、中学数学课程目标的发展变化对当今数学课程改革的启示 |
(一) 课程目标的表述应继承重视"结果"的传统,"结果"目标与"过程"目标并重 |
(二) 课程目标的表述应具体明确,将学段目标、年级目标、知识领域目标、知识单元目标、知识点目标结合起来 |
二、中学数学课程内容的发展变化对当今数学课程改革的启示 |
(一) 数学课程内容的选择应处理好稳定与发展的关系 |
(二) 数学课程内容的处理应恰当把握理论与实践的联系 |
(三) 数学课程内容现代化应与学生接受能力、教师的教学水平相适应 |
三、中学数学课程选择性的发展变化对当今数学课程改革的启示 |
(一) 应关注地区差异,分类设置课程,编写区域化教科书 |
(二) 数学课程的选择性应处理好理想与现实的关系 |
四、中学数学课程内容编排方式的发展变化对当今数学课程改革的启示 |
(一) 数学课程的综合化要以主线统领,各知识领域内容相对集中,不宜太分散 |
(二) 几何内容编排应兼顾传统,采用实验几何与论证几何结合的方式为宜 |
结束语 |
参考文献 |
附录 |
后记 |
在学期间公开发表论文及着作情况 |
(10)吉西略夫平面几何教材及其对中国几何教材影响的研究(论文提纲范文)
摘要 |
Summary |
绪论 |
一、吉西略夫及其平面几何教材简介 |
二、研究背景 |
三、研究意义和问题提出 |
四、文献综述 |
第一章 吉西略夫平面几何教材分析 |
第一节 教材的编排体系 |
第二节 教材的内容分析 |
第三节 早期几何课程改革思想理念的渗透 |
第四节 现代数学思想的渗透 |
第二章 吉西略夫平面几何教材对中国几何教材的影响及思考 |
第一节 全面学习苏联时期对中国几何教材的影响 |
第二节 20 世纪60 年代~90 年代初对中国几何教材的影响 |
一、吉西略夫平面几何教材对1963 年版平面几何教材的影响 |
二、吉西略夫平面几何教材对1981 年版平面几何教材的影响 |
第三节 对我国几何教材影响的思考 |
参考文献 |
附录I 1963 年平面几何教材结构框架 |
附录II 1981 年平面几何教材结构框架 |
致谢 |
四、浅谈现行中学几何教材公理体系(论文参考文献)
- [1]在初中数学“图形与几何”的教学中培养学生公理化思想——以“全等三角形的判定(第一课时)”为例[J]. 杨国俊,丘文斯. 数学学习与研究, 2021(34)
- [2]小学与初中数学课程中几何内容的百年变迁研究 ——基于数学教学大纲?课程标准的视角[D]. 陈梅娟. 贵州师范大学, 2021(08)
- [3]公理化方法在高中数学教学中的落地研究[D]. 洪睿. 江西师范大学, 2021(12)
- [4]人教、北师两版初中数学教材几何思维水平比较研究[D]. 高飞. 辽宁师范大学, 2021(08)
- [5]中国数学教科书中勾股定理内容设置变迁研究(1902-1949)[D]. 张冬莉. 内蒙古师范大学, 2020(07)
- [6]西藏职前初中数学教师基于数学史的专门内容知识个案研究[D]. 牟金保. 华东师范大学, 2020(12)
- [7]中国中学几何作图教科书发展史(1902-1949)[D]. 张彩云. 内蒙古师范大学, 2019(07)
- [8]职前数学教师实践知能发展的设计研究 ——以三个初中几何定理证明教学为例[D]. 李海. 华东师范大学, 2019(02)
- [9]中国当代中学数学课程发展的历程及其启示[D]. 吕世虎. 东北师范大学, 2009(11)
- [10]吉西略夫平面几何教材及其对中国几何教材影响的研究[D]. 刘岩瑜. 首都师范大学, 2009(10)