一、Isotopic characteristics of shoshonitic rocks in eastern Qinghai-Tibet Plateau: Petrogenesis and its tectonic implication(论文文献综述)
李浩然[1](2021)在《青海柴达木盆地周缘显生宙陆相火山岩区多金属成矿作用研究》文中研究说明柴达木周缘位于青藏高原的北缘,中央造山带重要的组成部分,包括东昆仑和祁连两大造山带。其独特的大地构造位置、复杂的构造环境、频繁的岩浆活动及不同程度的变质作用,记录了区域构造-岩浆-成矿作用的造山旋回过程,不仅造就了区内异常丰富的矿产资源,同时也是揭秘大陆岩石圈时空结构及不同圈层相互作用和显生宙地球动力学演化的理想试验地。论文选取了柴达木周缘近年来新发现的产在陆相火山岩区的具有代表性的6个典型矿床为研究对象,强调野外实际调研地质现象,结合详细的室内观察分析,系统的总结矿床地质特征、成矿条件,准确厘定矿床成因类型。对矿区内的火山岩及中酸性侵入岩开展岩石学、锆石LA-ICP-MS、全岩地球化学及锆石Hf同位素的综合研究,结合矿相学、流体包裹体、H-O同位素等一系列实验方法,取得了以下主要成果:柴北缘造山带内牦牛山组酸性火山岩结晶年龄为407Ma、378Ma、377Ma,结合该时期前人的研究资料,系统的总结了加里东期-华力西期陆陆碰撞-后碰撞的动力学演化事件,~410Ma的时间点为重要的同碰撞到后碰撞的构造体制转换时间,此时柴北缘地区发生板片断离事件,整体从挤压造山环境转为伸展环境,标志着正式进入后碰撞伸展阶段,随着地壳持续增厚在~380Ma发生岩石圈拆沉,大量的幔源岩浆上涌。本文获取的柴北缘晚华力西期-印支期中酸性侵入岩结晶年龄为240Ma、232Ma、230Ma,加里东期造山运动结束后,柴达木地块已经与祁连地块拼贴完成,本文研究认为该时期并未裂解出新的洋盆,而是与东昆仑造山带一同受巴颜喀拉洋北向俯冲作用影响。通过对东昆仑造山带中生代火山岩详细研究发现具有明显岩性差异、时代差异和构造背景差异的两期火山岩事件,而非前人认为的均为鄂拉山组,基于上述地质事实,本文建议将鄂拉山组解体,并建立夏河组,与传统的鄂拉山组火山岩相区分。夏河组成岩年龄为印支早期,地球化学和锆石Hf同位素特征显示其源区来源于俯冲板片脱水交代形成的富集地幔与熔融的镁铁质地壳形成的混合岩浆,形成于巴颜喀拉洋北向俯冲于柴达木陆块之下的活动大陆边缘背景。传统的鄂拉山组火山岩,其成岩年龄为印支晚期,源区具有强烈壳-幔混合岩浆特征,形成于陆陆碰撞之后的后碰撞伸展-强烈的岩石圈拆沉背景。由此可见,柴周缘显生宙存在三期陆相火山岩,而非前人认为的两期。本文对选取的六个典型矿床进行了细致的野外和室内工作,研究认为:柴北缘达达肯乌拉山多金属矿为热液脉型矿床,非VMS型矿床。孔雀沟-哈布其格钼(铜)多金属矿床具有典型的面型蚀变特征为斑岩型矿床,虽然目前研究程度较低,但是展现出巨大的找矿潜力。东昆仑造山带夏河铜多金属矿为高硫化型浅成低温热液矿床,鄂拉山口铅锌矿、哈日扎银多金属矿和那更康切尔银多金属矿为浅成中低温热液脉矿床。其中夏河,鄂拉山口和哈日扎均非前人认为的斑岩型矿床。鄂拉山口铅锌矿床流体包裹体主要有气液两相和含CO2三相,属于H2O-Na Cl-CO2体系,H-O同位素显示成矿流体来源于岩浆水和大气水的混合,硫同位素显示具有多元性,受酸性岩浆和地层共同影响。夏河铜多金属矿床以气液两相和含CO2三相为主,H-O同位素显示成矿流体具有深源性,演化到晚期大量大气降水参与成矿,硫同位素来源于中酸性岩浆活动。哈日扎和那更康切尔矿床流体包裹体以CO2三相和气液两相为主,C-H-O-S-Pb同位素显示成矿流体具有幔源初生水特征,铅来源于幔源和地壳的混合,硫同位素显示具有幔源硫的特征,此外首次在那更康切尔矿区发现碲化物的存在,种种迹象体现了深部地质作用对银多金属矿床的控制作用。在以上研究的基础之上,总结区域成矿作用与地球动力学背景的耦合关系,东昆仑造山带在晚华力西期-印支期巴颜喀拉洋北向俯冲的过程中,将大量的水和金属硫、亲流体的大离子亲石元素(LILE)、卤素以及其他组分输送到上地幔中,为形成富含Ag、Au成矿物质的幔源C-H-O流体相提供了基础。与此同时形成了一系列区域性大断裂、大型剪切带及次一级的褶皱和断裂控矿构造,该时期幔源岩浆底侵导致下地壳部分熔融,形成混合岩浆沿断裂上侵携带了成矿物质,在上升过程中物理化学条件发生变化,导致金属硫化物沉积形成如本文鄂拉山口和夏河矿床。演化到印支晚期洋盆闭合之后,区域经历强烈的构造体制转换,储存在上地幔的大量富含Ag、Au等金属元素的幔源C-H-O流体沿深大断裂运移至浅部地壳,成矿流体运移的过程中,也同样不断萃取围岩的成矿元素,在运移至浅部时,在大气降水的参与下,最终沉淀形成银多金属矿床。明确了产在柴周缘陆相火山岩区的矿床的找矿方向,既寻找形成深度较浅的矿床类型,如斑岩型矿床,浅成低温热液矿床和部分热液脉型矿床。由于中生代柴北缘远离俯冲带,因此东昆仑造山带成矿作用明显强于柴北缘地区。由于陆相火山岩区剥蚀深度较浅,本文认为陆相火山岩区是接下寻找此类Ag多金属矿床的重点靶区。本文以新的视角,内容涵盖丰富,将理论研究和实例分析相结合,提出了部分前瞻性探索和实践经验的总结规律。进一步厘清了柴达木盆地周缘成矿作用与地球动力学的耦合关系提供了一定的参考。在观点、方法、阐述过程及结论方面不足之处,承蒙同行专家批评指正。
赵拓飞[2](2021)在《青海东昆仑西段卡尔却卡-阿克楚克赛地区镍、铜成矿作用研究》文中提出青海省卡尔却卡-阿克楚克赛地区位于青海与新疆交界处,大地构造位置属柴达木地块南缘,东昆仑造山带西段。研究区经历了始太古代-古元古代结晶基底的形成,中-新元古代板块汇聚、前原特提斯洋盆演化和玄武岩高原的拼贴,加里东期-海西早期原特提斯洋构造域和海西晚期-印支早期古特提斯洋构造域的演化,印支晚期-燕山早期陆内造山作用和燕山晚期-喜马拉雅期区域的隆升作用。同时漫长而复杂的构造演化过程导致区内发育多期多类型矿产资源,但近几年受客观条件所限,一些科学问题制约着找矿突破,如地质研究程度较低,部分基础地质信息模糊,区内构造演化存在争议,矿床类型和成矿作用有待深入研究。本文通过对区内各类岩体和典型矿床进行研究,完善基础地质信息,探讨成矿动力学模式,总结成矿规律,从而进一步总结区域成矿理论,辅助区内矿产勘探工作。通过对研究区内黑云二长片麻岩、石英闪长岩、花岗闪长岩和二长花岗斑岩的年代学和地球化学等研究认为:厘定阿克楚克赛地区“古元古界金水口群片麻岩”实为新元古代早期(~946Ma)片麻状黑云二长花岗岩,岩体具同碰撞S型花岗岩特征。对比发现区域上该时期岩浆活动广泛发育,认为东昆仑地区在中-新元古代发育强烈的构造-岩浆事件,其可能响应全球性Rodinia超大陆的聚合。厘定阿克楚克赛高Mg闪长岩成岩时代为加里东晚期(~426Ma),岩石具赞岐岩类地球化学特征。加里东晚期受原特提斯洋演化的影响,万宝沟大洋玄武岩高原拼贴至北部柴达木地块南缘之上,深部洋壳板片继续俯冲发生断离,软流圈沿板片断离形成的板片窗上涌至地壳浅部形成镁铁质-超镁铁质侵入岩,上涌过程中与富Mg的断离板片熔融,形成本区高Mg闪长岩类。卡尔却卡花岗闪长岩形成于印支早期(~242Ma)。岩石为新生玄武质地壳和古老的硅铝质地壳物质混合形成,与俯冲带岩浆岩特征一致。表明印支早期与古特提斯洋俯冲有关的岩浆侵入活动强烈。阿克楚克赛二长花岗斑岩形成于印支晚期(~221Ma)。岩石为高分异I型花岗岩,岩浆主要来源于下地壳的部分熔融,并有幔源物质的加入,形成于强烈伸展的构造背景下。东昆仑地区古特提斯洋在海西晚期向北俯冲,中三叠世洋盆闭合,形成与俯冲有关的壳源岩浆。晚三叠世东昆仑地区进入后碰撞伸展阶段,岩石圈拆沉减薄导致大规模伸展作用发生,幔源岩浆上涌,直接侵位形成基性-超基性岩石。上侵过程中或与地壳物质混合形成壳幔混源岩浆,或加热地壳形成壳源岩浆。印支期岩浆活动最为强烈,是东昆仑地区最重要的岩浆-热液矿床成矿作用期。对研究区内四个典型矿床(点)进行研究,阿克楚克赛地区原被划分为泥盆纪闪长岩岩体实为辉石岩和辉长岩经自变质作用形成的杂岩体,形成时代包括加里东晚期和印支晚期。厘定含矿辉石岩锆石U-Pb年龄为416±3Ma,变质辉长岩锆石U-Pb年龄为424±3Ma。矿床类型为岩浆铜镍硫化物矿床,含矿岩浆起源于亏损地幔的部分熔融并受到俯冲组分的加入,同时侵位过程中奥陶-志留纪滩间山群大理岩地层为幔源岩浆的成矿作用提供了外源硫,Ca2+、Mg2+等离子的加入导致岩浆结晶温度降低,使岩浆中硫化物发生过饱和,从岩浆中熔离成矿。区内新发现一期晚三叠世(~220Ma)辉长岩岩体,岩体形成于造山后岩石圈拆沉减薄,幔源物质底侵的构造背景下。岩浆源区为富集岩石圈地幔,岩浆结晶分异程度差,岩相单一,硫化物熔离程度低,蚀变和矿化弱。综上,青海东昆仑西段加里东晚期铜镍硫化物矿床找矿潜力巨大,印支晚期找矿潜力一般。通过野外调研,在阿克楚克赛地区新发现一处铅、锌矿化点。早三叠世花岗斑岩(~244Ma)发生强蚀变,钻孔浅部可见青磐岩化带,西侧钻孔深部出现泥化带,并发育浸染状黄铁矿、方铅矿、闪锌矿等。铅、锌品位低且连续性好,符合斑岩型矿床的面型蚀变和分带特征。限于矿化点发现时间晚,工作程度低,目前研究仍处于蚀变带外围。但该矿化点热液蚀变强烈,蚀变带规模大,剥蚀程度小,深部有进一步勘查的潜力。该矿化点的发现表明昆中带在总体抬升大的背景下其北部存在差异性的下降,具有斑岩型矿床的找矿潜力。卡尔却卡A区分南北两矿段,南矿段成矿与硅化关系密切,矿体严格受断裂构造控制,矿石发育团块状构造,铜矿石品位高且变化大。厘定含矿石英脉Ar-Ar等时线年龄为241±2Ma,代表成矿年龄。S-Pb同位素显示成矿物质具壳幔混合特点,H-O同位素显示成矿流体以岩浆水为主并存在大气水参与。流体包裹体发育富液相、含子矿物三相和含CO2包裹体,主成矿阶段均一温度为293℃~360℃,含矿物质主要以液相形式迁移,成矿早阶段流体发生了不混溶,流体不混溶和温度降低是矿质沉淀的主导因素。综合研究认为卡尔却卡A区南矿段为受断裂构造控制的中-高温热液脉型铜矿床,而非前人认为的斑岩型矿床。北矿段矿体产于隐爆角砾岩体内,矿化厚度小,平面延长远大于垂向延伸,角砾无磨圆且未发生较大位移,隐爆作用仅发生于岩体表壳,与典型的隐爆角砾岩筒矿床不同,本文将其定为产于岩体顶部的隐爆角砾岩壳矿床。S同位素显示成矿流体主要来自岩浆;H-O同位素显示成矿流体为大气降水与岩浆水混合。流体富CO2和N2,说明可能有幔源流体参与成矿。断裂构造不发育并且未形成热液向上运移通道导致岩浆难以达到二次沸腾的条件发生持续隐爆作用。因此矿床主要为岩体顶部和裂隙中汇聚的有限气水热液发生小规模隐爆作用形成,虽能构成矿化但不具备形成大矿的潜力。卡尔却卡B区为典型的矽卡岩型铜钼矿床,围岩为滩间山群大理岩,矿床形成于花岗闪长岩与地层接触带形成的矽卡岩内。与成矿有关的花岗闪长岩年龄(~242Ma)与辉钼矿矿石Re-Os同位素年龄(~242Ma)一致,代表成矿时代为早三叠世。早期石英-硫化物阶段流体主要形成富液相和纯气相包裹体,表现为高温(253℃~390℃)中低盐度(4.0~16.1%Na Cl eq.)特征,H-O同位素显示成矿流体主体以岩浆水为主,大气水混入对成矿的影响有限。因此温度降低是矿质沉淀的主要原因。S-Pb同位素和Re含量显示成矿物质具有壳幔混合的特点。综合研究认为,花岗闪长岩侵入滩间山群地层中发生接触交代作用产生矽卡岩,岩体演化形成的含矿热液以及不断萃取地层中有用组分共同组成成矿流体,受大气降水或其他浅部地体水的混合冷却,矿质进一步在构造薄弱部位沉淀和富集,形成本区具有规模的矽卡岩型铜钼矿床。青海东昆仑西段主要有三期成矿:加里东晚期、印支早期和印支晚期。加里东晚期主要形成与板片断离有关的岩浆铜镍硫化物矿床,幔源岩浆主要来源于亏损地幔;印支早期受古特提斯洋北向俯冲的影响,主要形成与俯冲背景有关的矽卡岩型-中高温热液脉型铜钼矿床,铜主要来源于幔源岩浆;印支晚期进入后碰撞伸展环境,岩石圈拆沉,幔源岩浆底侵,导致从基性到酸性岩石均发育,主要形成与伸展背景有关的斑岩型-矽卡岩型铜、铁、铅、锌等金属矿床。青海东昆仑地区整体西段抬升剥蚀大于东段,而西段以昆中带剥蚀程度最大,以黑山-那陵格勒河断裂为界,昆中带内北部抬升剥蚀弱于南部,南部浅成矿床几乎剥蚀殆尽,找矿方向以岩浆矿床和中深成高温热液脉型矿床为主。北部抬升及剥蚀较弱,印支期斑岩型、矽卡岩型及中低温热液脉型矿床成矿和保存条件良好,但该时期岩浆铜镍硫化物矿床找矿潜力有限,应主攻斑岩型、矽卡岩型及中低温热液脉型矿床。
郝江波[3](2021)在《中-南阿尔金地区中-新元古代物质组成、年代学及构造演化》文中研究表明阿尔金地区位于青藏高原的北缘,夹持于塔里木、柴达木陆块之间,具有重要的地质意义。阿尔金地区前寒武纪地质体分布广泛,但是关于阿尔金在中-新元古代的构造演化历史研究程度相对薄弱,制约了其与全球超大陆事件之间的关系认识。本文以阿尔金山地区前人划分的长城纪巴什库尔干岩群、蓟县纪塔昔达坂群和青白口纪索尔库里群以及新元古代岩浆岩为研究对象,在大量的野外地质调研基础上,通过岩相学、锆石年代学、地球化学以及构造变形分析等手段,确定了巴什库尔干岩群、塔昔达坂群和索尔库里群的形成时代、沉积环境、碎屑物源以及构造背景;厘定了上述地层构造变形的几何学和运动学特征,探讨了其动力学过程。同时,通过对新元古代岩浆岩进行岩石学、地球化学和锆石LA-ICP-MS U-Pb定年分析,建立了阿尔金地区中-新元古代岩浆事件的年代学格架,探讨了各期次火成岩的岩浆源区性质及其形成的构造背景。基于上述研究以及前人研究成果,最终探讨了阿尔金中-新元古代区域构造演化历史及其块体亲缘性,其主要认识如下:1.塔昔达坂群总体为一套低绿片岩相的副变质岩,原岩建造可能是一套深水还原环境下具浊积岩特征的复理石建造。物质源区以长英质陆弧和上地壳物质为主,形成于活动大陆边缘的构造环境,其形成时代介于1087~945Ma。阿尔金杂岩中绿片岩相副变质岩与中阿尔金塔昔达坂群具有相同的物质组成、形成时代、碎屑锆石频谱以及锆石Hf同位素,表明两者应属于同一套地层。2.首次在索尔库里群乱石山组中发现凝灰岩夹层,限定其形成时代为936Ma。索尔库里群总体为一套形成于浅海-潮坪环境的碎屑岩-碳酸盐岩建造,物质源区主要来自再旋回造山带,少数来源于克拉通,形成于伸展构造环境。索尔库里群砾岩和岩屑砂岩成分与塔昔达坂群物质组成相似,同时两者具有相似的碎屑锆石频谱,说明塔昔达坂群为索尔库里群提供了物源。3.在阿尔金杂岩中新识别出多个新元古代花岗质岩体,其成岩年龄介于997-901Ma。地球化学特征显示它们为S型和I-S过渡型花岗岩,岩浆起源于塔昔达坂群与南阿尔金变质表壳岩的部分熔融。在前人划分的长城纪巴什库尔干岩群中解体出三期新元古代中晚期岩浆记录:825 Ma的A型花岗岩、779Ma的高分异花岗岩以及758 Ma的高分异花岗岩与同时期的辉绿岩,这些新元古代中-晚期岩浆作用主要形成于板内的伸展环境。4.揭示前人划分的长城纪巴什库尔干岩群并非传统上认为的一套连续沉积地层,主要由新元古代-古生代不同成因环境的岩块无序拼贴在一起,为构造混杂岩。本文将巴什库尔干岩群重新厘定为一套新元古代晚期(南华纪)具有裂谷盆地性质的的火山-碎屑沉积岩系,其他物质组分应该从巴什库尔干群中剥离出来。5.构造变形分析表明,塔昔达坂群至少经历3期构造变形,第一期构造变形可能与新元古代超大陆聚合有关,索尔库里群至少是在塔昔达坂群第一期变形之后沉积的。塔昔达坂群、索尔库里群、巴什库尔干杂岩南部一起经历SSW向NNE的挤压作用,巴什库尔干杂岩北部发育同时期向SSE方向逆冲,该期变形可能与北阿尔金洋的俯冲过程有关。而塔昔达坂群、索尔库里群以及巴什库尔干杂岩晚期NW-SE向挤压作用可能与阿尔金形成左行走滑断裂系有关。6.中-南阿尔金与东昆仑、柴达木地块具有相似的中元古代晚期-新元古代岩浆-沉积记录,共同构成柴达木地块的前寒武纪基底。7.结合与Laurentia东缘、Baltica西南缘以及Amazoina西南缘在沉积记录和岩浆活动等方面的相似性,本文为构造古地理重建提供了新的模型,认为阿尔金可能位于Rodinia超大陆核心区Laurentia、Baltica、Amazoina之间。
汤文坤[4](2021)在《东帕米尔地区古特提斯演化及其构造意义 ——来自花岗质岩石的证据》文中进行了进一步梳理帕米尔地区古特提斯洋的演化是研究青藏高原构造演化的重要一环,由于区内经历了复杂的构造演化历史和新生代广布的陆内构造变形,造成对于帕米尔地区各构造块体与青藏高原主体块体间的对比仍存在争论。尤其是中帕米尔块体南侧的Rushan-Pshart缝合带是否属于古特提缝合带,其构造属性对限定新生代喀喇昆仑断裂在高原陆内变形中的作用有至关重要的意义。本文以东帕米尔地区布伦口-瓦恰-红旗拉普一线的瓦恰岩体、塔什岩体、塔合曼岩体和明铁盖岩体等为主要研究对象,对采自这些岩体的岩石样品进行锆石U-Pb年代学和主微量及同位素地球化学进行分析测试,根据测试结果,结合区域资料探讨东帕米尔地区古特提斯构造演化过程,并以缝合带为错断标识物探讨喀喇昆仑断裂新生代的走滑错距。东帕米尔地区西昆仑造山带西段瓦恰岩体内含有辉长闪长质和闪长质包体,样品锆石U-Pb年代学测试结果表明岩体形成时代为323-318Ma。地球化学和同位素测试结果表明岩体母岩和包体均表现为低钾、偏铝质钙碱性特征,样品均含有较低的REE含量,表现为近水平的LREE分模式,富集Rb,Ba,Zr,Hf,亏损Nb,Ta,P,Ti。初始87Sr/86Sr、εNd(t)和εHf(t)分别为0.7040至0.7045,+4.63至+5.02,+9.9至+14.7。这些特征指示岩体母岩和包体为同源成因,形成于大洋岛弧环境下新生铁镁质地壳的含水部分熔融,本研究表明甜水海-北羌塘块体北侧的古特提洋盆在早石炭世晚期存在洋内俯冲过程。东帕米尔地区中帕米尔南缘的塔合曼岩体和塔什岩体内的花岗岩样品和明铁盖岩体内的糜棱岩化花岗岩样品的锆石U-Pb年代学测试结果表明三个岩体均形成于206-201 Ma。塔合曼和塔什岩体样品富集LILE,亏损HFSE,样品LREE富集,εNd(t)为-7.3至-6.9,εHf(t)为-15.5至-1.4。均表现为偏铝质至弱过铝质I型岛弧花岗岩的特征。塔合曼岩体源于下地壳前寒武系变质沉积岩与变质火山岩的部分熔融,塔什岩体则是源自更深部下地壳石榴石相下高钾玄武质组分的部分熔融。结合区域研究成果,这些晚三叠世的花岗岩体形成于Rushan-Pshart缝合带的闭合过程,由此断定中帕米尔块体南侧的Rushan-Pshart缝合带为一条古特提斯缝合带。东帕米尔地区中帕米尔-甜水海块体北侧的Tanyma-麻扎缝合带是金沙江古特提斯缝合带的西向延伸,块体南侧的Rushan-Pshart缝合带向东延伸为龙木错-双湖古特提斯主缝合带。古特提斯主洋盆(Rushan-Pshart-龙木错-双湖-北澜沧江-昌宁-孟连-Inthanon古特提斯洋)闭合时间自帕米尔地区向东至三江地区呈现为逐渐变老的趋势,北部的古特提斯洋分支洋盆(Tanymas-金沙江-Song Ma古特提斯洋)的闭合时间自西向东表现为逐渐变年轻的趋势,指示中帕米尔-北羌塘-印支块体与它相邻块体之间的拼合表现为斜向汇聚的模式。Rushan-Pshart缝合带作为龙木错-双湖古特提斯缝合带的西向延伸部分,以其为错断标识物,喀喇昆仑断裂右行错断中帕米尔-甜水海块体约为80 km,远低于大陆逃逸模式下数百公里的走滑错距。东帕米尔地区韧性剪切带内云母40Ar/39Ar年龄和未变形花岗岩脉锆石U-Pb年龄限定喀喇昆仑Aksu-Rangkul分支断裂的活动时间为11-9.6 Ma,由此限定断裂的长期走滑速率小于10 mm/yr。结合区内断裂构造特征,帕米尔地区新生代构造演化更符合分散变形模式。
张博川[5](2021)在《西藏物玛地区始新世流纹岩的岩石成因及地质意义》文中研究表明青藏高原的隆升与新生代以来全球气候和环境的变化密切相关,因而一直是国内外地质学家研究的热点和重点。青藏高原隆升的研究已经持续了近100年,但隆升时间、过程和机制等尚存在争议。本文以青藏高原中部北拉萨地体物玛地区的始新世流纹岩为研究对象,对其开展了详细的锆石U-Pb测年、锆石Lu-Hf同位素、全岩地球化学和Sr-Nd同位素研究,探讨了他们的岩石成因,并结合区域地质资料,约束了青藏高原中部北拉萨地体始新世阶段的隆升机制。测试结果显示:物玛流纹岩形成于40-39Ma(始新世),具有高的Si O2(68.5-71.5 wt.%)、Al2O3(15.1-16.2 wt.%)、Na2O(1.87-4.01 wt.%)和K2O(5.46-6.81 wt.%)含量,低的Mg O(0.20-0.48 wt.%)、Ti O2(0.36-0.42 wt.%)和P2O5(0.09-0.13 wt.%)含量,富集大离子亲石元素和轻稀土元素,亏损高场强元素和重稀土元素,同时还具有正的锆石εHf(t)(+5.3-+8.5)值和全岩εNd(t)(+0.9-+1.5)值。结合前人报道的北拉萨地体始新世岩浆岩,我们推测物玛流纹岩形成于新生铁镁质下地壳的部分熔融,岩浆源区残留石榴石和角闪石。与青藏高原中部南中拉萨地体和羌塘地体的始新世中酸性岩浆岩相比,北拉萨地体的始新世流纹岩具有低的(La/Yb)N、Sr/Y和锆石Eu/Eu*值,表明北拉萨地体始新世流纹岩来源的下地壳深度要浅于南中拉萨地体和羌塘地体同时期中酸性岩浆岩来源的下地壳深度,据此我们推测始新世时期北拉萨地体具有比南中拉萨地体和羌塘地体薄的地壳。依据重力均衡假说和前人古地理高程数据,我们得出北拉萨地体始新世时期的古海拔明显低于两侧的南中拉萨地体和羌塘地体。基于显着的地形起伏、青藏高原中部始新世岩浆岩相似的地球化学和Sr-Nd同位素特征、北拉萨地体始新世微弱的中上地壳缩短等资料,我们得出青藏高原中部始新世时期具备下地壳通道流发生的必要条件。由此,我们提出下地壳通道流模型来解释青藏高原中部北拉萨地体始新世时期的隆升。
袁远[6](2020)在《闽西南永定—德化地区早白垩世花岗质岩石成因与铁—钼成矿作用》文中提出闽西南地区是东南沿海乃至华南最具经济意义的铁、铜成矿带之一,带内已发现120余个铁多金属矿床,尤以马坑式矽卡岩型铁钼多金属矿最为典型。铁钼多金属矿化与集中出露于该区永定—德化一带的早白垩世花岗岩类的关系极为密切。但是针对该阶段花岗岩类的研究程度仍比较低,致使该区早白垩世岩浆作用的时空分布、成因机制及其与铁钼多金属成矿的耦合关系还存在争议。据此,本文选取闽西南永定—德化地区与铁钼多金属矿相关的早白垩世花岗岩类为研究对象,包括十二排、大排与永福复式岩体,开展系统的岩石学、同位素年代学、矿物与岩石地球化学研究,详细分析了早白垩世花岗岩类的岩相学与地球化学特征,全面阐明了它们的成因类型、岩浆起源及演化机制,精确厘定了岩浆侵位时代;查明了典型铁钼矿床地质特征与同位素地球化学组成,在此基础上系统探讨了早白垩世岩浆作用与铁钼成矿事件的成因联系以及构造背景。取得的主要认识如下:1.锆石U-Pb年代学结果揭示了本文研究岩体的形成年龄主要集中在142~128Ma。通过对比分析区内已报道的同时期花岗岩类年代学与岩石学资料,新提出闽西南永定—德化地区存在一条早白垩世花岗质岩浆岩带,岩石组合主要为正长花岗岩—黑云母二长花岗岩—花岗闪长(斑)岩,侵位时限为早白垩世早期(145~125Ma)。2.元素地球化学研究表明,永定—德化带早白垩世花岗岩类显示高硅富钾,普遍贫钙、镁,为准铝质—弱过铝质岩石。微量元素组成上,它们均不同程度富集K、Rb、Th、U、Y和REE,显着亏损P、Ti、Sr、Ba、Nb、Ta等元素,具有中等至强负Eu异常和平缓右倾型稀土配分模式。地球化学特征指示研究区早白垩世花岗质岩体主要属于高钾钙碱性的高分异I型花岗岩类。3.Sr-Nd-Hf同位素特征表明,相关早白垩世花岗岩类很可能是由古元古代(麻源群)基底变质岩部分熔融产生的熔体与地幔岩浆发生混合,随后进一步通过较高程度分异结晶形成的。幔源岩浆不仅直接参与了成岩过程,并且地幔物质贡献程度随时间逐渐增大,反映了深部趋于强烈的壳幔相互作用过程。4.典型矿床地质调查、地球化学及成矿年代学研究表明,铁钼多金属矿化主要形成于145~130Ma,与永定—德化带早白垩世早期花岗岩类具有紧密时空关联。S-Pb-O-Re同位素分析结果表明,铁钼多金属矿化的成矿流体与金属元素主要来自于与早白垩世高分异花岗岩类相似的壳源岩浆。通过综合对比,本文认为闽西南永定—德化早白垩世花岗质岩浆侵入及相关的矽卡岩—斑岩型铁钼多金属成矿作用主要受控于晚中生代古太平洋板块后撤引发的弧后伸展背景。5.通过对比分析前人对该区成矿系列的相关认识,本文将闽西南地区与铁钼多金属矿床有关的成矿系列重新厘定为“与早白垩世早期花岗岩类有关的铁、钼、铅锌、铜成矿系列”,并进一步提出了铁钼多金属矿床的主攻类型及找矿方向。
陈敏[7](2020)在《柴北缘宗务隆构造带金属成矿地质环境及控制要素研究》文中研究指明宗务隆构造带是柴达木北缘的重要地质构造单元,金属成矿地质条件良好,重大找矿突破令人期待。本文以宗务隆构造带为对象,通过巴罗根郭勒基性岩墙群和蓄集闪长岩的岩石学与地球化学研究,探讨了其成矿地质环境;通过蓄集铅银矿床、尕日力根金矿床和其他矿化现象的矿床地质和地球化学研究,分析了金属成矿的控制要素;综合地质、物探、化探和矿产信息对金属矿产进行预测。主要成果和认识如下:(1)宗务隆构造带内巴罗根郭勒基性岩墙侵入时代为289±1Ma(锆石U-Pb),岩石为碱性玄武质成分,其岩浆是软流圈地幔低程度部分熔融形成的玄武质岩浆,并在演化过程中萃取岩石圈富集地幔的组分;蓄集闪长岩体侵入时代为258±1Ma(锆石U-Pb),岩石为准铝高钾钙碱性,其岩浆是壳幔混合的产物,其中古老地壳物占主导。(2)宗务隆构造带早泥盆世-早石炭世初始裂解,可能利于形成矽卡岩型矿床。晚石炭世-早二叠世陆内持续裂解,东部形成有限洋盆环境;而中西部开裂相对东部较晚,显示陆内裂谷环境,有利形成砾岩改造型矿床。中二叠世-中三叠世先后发生洋陆俯冲,有利形成矽卡岩型、伟晶岩型、岩浆-构造热液脉型等矿床类型;晚三叠世碰撞造山过程,呈现剪切作用,可能对前期形成的矿床有一定的改造/破坏作用。(3)蓄集铅银矿床矿体受压扭性断裂控制,呈脉状近东西向产在石炭-二叠系宗务隆群千枚岩夹灰岩中,成矿物质主要来自宗务隆群,成矿流体主要为岩浆期后高温、高盐度热液流体,矿床属构造-岩浆热液脉型矿床。尕日力根金矿床矿体产在二叠系勒门沟组砾岩中,呈似层状/透镜状,与容矿地层整合产出,成矿先后经历了古砂矿沉积期和变质热液再富集期,含砷黄铁矿和毒砂为主要载金矿物,应属砾岩改造型金矿床。(4)宗务隆构造带控矿要素及未来找矿方向:1)构造-岩浆热液脉型银铅锌成矿受宗务隆群中碎屑岩夹碳酸盐岩部位、近东西/北西向的逆冲断层和中二叠世-中三叠世中酸性侵入体控制。2)矽卡岩型铁金成矿受碳酸盐岩地层、中酸性侵入岩矽卡岩组合控制。3)伟晶岩型锂铍铌钽矿床受(白云母)花岗伟晶岩控制。4)砾岩改造型金成矿受二叠系勒门沟组砾岩、含砾砂岩和宗务隆北缘断裂及其次级断裂裂隙控制。根据不同主攻矿床类型控制要素,综合地、物、化等资料,划分了A、B、C级成矿远景区。
李智佩,吴亮,颜玲丽[8](2020)在《中国西北地区蛇绿岩时空分布与构造演化》文中研究说明西北地区蛇绿岩广泛分布在天山、秦祁昆等造山带和塔里木、准噶尔等陆块周缘,构成一幅浑然天成的陆块-混杂带交织图,演绎着漫长的地质演化历史。在近年来小比例尺西北地质图编制的基础上,系统收集整理了区内有关蛇绿岩的资料文献,梳理了西北蛇绿混杂岩的空间分布与时间序列,重点叙述了西北地区蛇绿混杂岩特征,探讨西北地区蛇绿岩时空分布与地质构造演化的关系。西北地区36条蛇绿混杂岩带是蛇绿岩的赋存空间,可以划归为5个区、2个对接带和2个缝合带。红柳沟-北祁连山新太古代—中元古代蛇绿岩可能与地壳早期演化有关,柯坪、勉略、松树沟等新元古代早期蛇绿岩与Rodinia超大陆的裂解和局部洋陆转化相关,大量古生代以来的蛇绿岩是古亚洲和特提斯两大构造域多陆块岛弧洋盆系统洋陆转化作用的记录。
闫浩瑜[9](2020)在《青藏高原南拉萨亚地体晚白垩世-中新世岩浆岩成因机制及深部动力学过程》文中研究表明印度和欧亚大陆自新生代以来的持续挤压碰撞导致了世界上最年轻和最壮观的青藏高原陆-陆碰撞造山带的形成,且这个造山带的形成和演化一直是国际地球科学领域研究最热的问题之一。拉萨地体位于欧亚大陆的最南端,是欧亚大陆与印度大陆距离最近的构造单元,也是受陆-陆碰撞影响最大的地体。在拉萨地体中,尤其是南拉萨分布的晚白垩世-中新世的冈底斯花岗岩基和古新世-始新世的林子宗火山岩一直是研究的热点和焦点。因为这些岩浆岩记录了印度-欧亚大陆碰撞前-中-后的复杂过程,所以它们是揭示新特提斯大洋板片俯冲消减、印度-欧亚大陆碰撞以及高原隆升机制等过程的关键。然而,迄今为止对于南拉萨出露的晚白垩世-中新世的冈底斯花岗质岩石和古新世-始新世的林子宗火山岩的成因机制及深部动力学过程仍然存在较多的争议,阻碍了我们对新特提斯大洋板片俯冲消减过程,以及随后持续的陆-陆挤压碰撞过程形成的岩浆岩的物质来源及岩浆过程的理解。本文结合野外地质和室内整理的资料,选择出露在南拉萨碰撞前的南木林晚白垩世闪长岩、碰撞后的日喀则中新世埃达克质岩墙和碰撞过程中的林周盆地古新世典中组火山岩作为研究对象。通过详细的岩石学、锆石U-Pb年代学、全岩主-微量和同位素地球化学(Sr-Nd-Mo),并结合已发表的数据,揭示了这些碰撞前-中-后形成的不同类型岩浆岩的岩石成因和深部动力学过程,且取得了如下进展:(1)碰撞前的南木林闪长岩形成时代为94.3~92.3 Ma,这些年龄结果与前人在该地区报道的辉长岩-辉长闪长岩锆石U-Pb年龄是一致的。南木林晚白垩世辉长岩、辉长闪长岩和闪长岩是正常的弧岩浆岩,具有几乎一致的Sr-Nd同位素组成,区域上部分同期的埃达克质岩石也具有相对一致的Sr-Nd-Hf同位素组成。本文通过元素和同位素分析认为这些(辉长岩-闪长岩和埃达克质岩石)同期但不同类型的岩浆岩是来自混杂岩在弧下地幔楔区的不同深度下熔融形成,而非来自交代地幔楔熔融形成。混杂岩(包含大洋玄武岩、大洋沉积物以及地幔楔橄榄岩组分)首先在俯冲隧道即俯冲板片和地幔楔接触界面进行均匀的物理混合,然后部分以底辟的形式上升到浅的地幔楔区经熔融形成不具有埃达克质岩石地球化学特征的南木林晚白垩世辉长岩-闪长岩,部分被运输到较深的俯冲隧道熔融形成埃达克质岩石。晚白垩世这些不同类型弧岩浆岩的形成是由于新特提斯大洋板片向南回撤导致,在大洋板片回撤的过程中上涌的热的软流圈地幔以及热的角流为混杂岩提供热源促使其熔融。(2)碰撞后的日喀则岩墙形成时代为中新世,其锆石U-Pb年龄为14.8~10.3 Ma,具有富集的Sr-Nd同位素组成,并显示典型的埃达克质岩石地球化学特征,主要为增厚且年轻的拉萨镁铁质下地壳熔融的产物。根据Na2O、K2O含量以及Na2O/K2O比值,这些岩墙可以划分为两种类型:富钾的岩墙和富钠的岩墙。两类岩墙Na2O、K2O含量的不同和富集的Sr-Nd同位素组成说明其形成的过程中有古老的印度大陆地壳的物质不同程度参与。此外,富钠的岩墙显示高的MgO、Cr、Ni和Na2O含量,指示软流圈地幔物质在其形成过程中也参与它们的形成。综合文献资料和本文研究,指示了壳-幔物质不同程度的参与导致区域上晚渐新世-中新世埃达克质岩石具有不同的地球化学特征。根据后碰撞岩浆岩受南北向的断裂控制以及地球物理等证据,本文认为南拉萨亚地体出露的晚渐新世-中新世岩浆岩的形成是由印度大陆板片撕裂所造成的(3)碰撞过程中的林周盆地林子宗火山岩系列中典中组火山岩形成时代为62.1~60.9 Ma,与前人研究结果一致。目前对于林子宗火山岩典中组安山岩存在不同的岩石成因认识,以Mo et al.(2007,2008)的观点最具代表性,他们认为典中组火山岩来源于新特提斯洋壳及其上覆的远洋沉积物在角闪岩相的熔融形成。但是我们的元素和同位素(Sr-Nd-Mo)的证据却指示该套火山岩很可能来自于混杂岩的底辟熔融。混杂岩在俯冲隧道即俯冲板片和地幔楔界面混合均匀,然后以底辟的形式上升到较浅的地幔楔区,在热的软流圈地幔和地幔楔角流的作用下发生部分熔融形成典中组安山岩,该动力学过程受控于新特提斯大洋板片在古新世期间向南的回转或回撤。(4)这三期岩浆岩形成的深部动力学过程是不同的,记录了洋-陆俯冲到陆-陆碰撞造山的复杂过程,在这些岩浆岩形成的过程中不同的物质以及不同的岩浆过程参与它们的形成。
杜斌[10](2020)在《三江特提斯造山带岩石圈物质结构及其对斑岩成矿约束》文中进行了进一步梳理三江特提斯造山带经历了原、古、中、新特提斯及新生代的印度-欧亚大陆碰撞的复杂构造演化过程,是我国少数既存在俯冲斑岩型Cu(-Mo-Au)矿床和陆陆碰撞型Cu(-Mo-Au)矿床的区域。岩石圈结构的解剖对理解不同环境背景下斑岩型Cu(-Mo-Au)矿床区域成矿规律和深部成矿机制具有重要意义。本文通过矿床学、地球化学和同位素填图等研究,讨论三江特提斯造山带岩石圈结构及其对斑岩成矿的约束,取得如下主要认识和成果。(1)通过对三江特提斯造山带晚三叠世、晚白垩世、古近纪的三期岩石地球化学特征研究,认为晚三叠世的成岩成矿与古特提斯甘孜-理塘洋西向俯冲有关,晚白垩世成岩成矿与中咱地块后碰撞伸展环境有关,在后碰撞伸展环境下的古近纪成岩成矿与大陆岩石圈地幔的拆沉作用有关。加深了对洋壳俯冲增生、后碰撞伸展环境以及后碰撞造山过程中大陆岩石圈地幔拆沉作用与斑岩Cu(-Mo-Au)矿床成矿机理的认识,为下一步寻找斑岩型矿床提供理论支撑。(2)通过三江特提斯造山带Hf同位素、Nd同位素以及全岩地球化学同位素的填图,揭示三江特提斯造山带各个地块的物质组成及属性,提出了碰撞造山带新生地壳的形成与改造,对研究地球物质循环和大陆形成具有重要意义。(3)通过对区域性岩石圈架构研究,认为斑岩型Cu(-Mo-Au)矿床均就位于金沙江-哀牢山缝合带及周边的新生地壳区域,岩石圈架构及其地壳类型作为一个一级因素,控制着不同矿床的成因和定位,为筛选矿产勘探战略远景提供了重要参考。(4)通过西藏-三江特提斯造山带Hf同位素填图对比研究,提出斑岩Cu(-Mo-Au)矿床的形成与新生地壳的生长有关,幔源组分在新生地壳中占有率(贡献率)越大,越容易形成大规模的斑岩型Cu(-Mo-Au)矿床,对造山带斑岩矿床的形成研究具有重要的理论意义。
二、Isotopic characteristics of shoshonitic rocks in eastern Qinghai-Tibet Plateau: Petrogenesis and its tectonic implication(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、Isotopic characteristics of shoshonitic rocks in eastern Qinghai-Tibet Plateau: Petrogenesis and its tectonic implication(论文提纲范文)
(1)青海柴达木盆地周缘显生宙陆相火山岩区多金属成矿作用研究(论文提纲范文)
中文摘要 |
abstract |
绪论 |
0.1 论文选题及意义 |
0.1.1 项目依托及选题来源 |
0.1.2 选题依据及意义 |
0.2 研究区地理位置及自然条件 |
0.3 研究现状及存在问题 |
0.3.1 陆相火山岩区矿床研究现状 |
0.3.2 研究区区域地质和矿产研究工作 |
0.3.3 存在问题 |
0.4 研究思路和研究方法 |
0.4.1 研究思路 |
0.4.2 研究内容及方法 |
0.5 主要工作量 |
0.6 论文研究的主要成果和进展 |
第1章 区域地质背景 |
1.1 大地构造位置及构造分区 |
1.1.1 大地构造位置及构造分区 |
1.2 区域地层 |
1.2.1 柴周缘东昆仑造山带 |
1.2.2 柴北缘造山带 |
1.3 区域构造 |
1.3.1 昆南断裂 |
1.3.2 昆中断裂 |
1.3.3 昆北断裂 |
1.3.4 柴达木南缘隐伏断裂 |
1.3.5 柴达木北缘隐伏断裂 |
1.3.6 丁字口-乌兰断裂 |
1.3.7 宗务隆山南断裂 |
1.3.8 宗务隆-青海南山断裂 |
1.3.9 阿尔金断裂 |
1.3.10 哇洪山-温泉断裂 |
1.4 区域岩浆岩 |
1.4.1 东昆仑地区 |
1.4.2 柴北缘地区 |
第2章 柴周缘陆相火山岩及动力学演化研究 |
2.1 前加里东期柴周缘构造演化 |
2.2 加里东期-华力西期柴周缘构造演化 |
2.2.1 柴南缘东昆仑造山带加里东期强烈构造体制转化和构造迁移 |
2.2.2 柴北缘造山带加里东期-华力西期构造演化新认识 |
2.3 华力西期-印支期柴周缘构造演化 |
2.3.1 华力西-印支期东昆仑造山带安第斯型造山运动 |
2.3.2 华力西期-印支期柴北缘构造演化新认识 |
2.3.3 柴周缘中生代相邻板块时空演化关系 |
2.4 关于中生代火山岩问题 |
2.4.1 印支早期夏河组火山岩 |
2.4.2 印支晚期鄂拉山组火山岩 |
2.4.3 夏河组和鄂拉山组火山岩差异性对比 |
第3章 典型矿床研究 |
3.1 柴周缘中生代陆相火山岩区典型矿床 |
3.1.1 鄂拉山口铅锌矿床 |
3.1.2 夏河铜多金属矿床 |
3.1.3 哈日扎银铜多金属矿床 |
3.1.4 那更康切尔银矿床 |
3.2 柴周缘古生代陆相火山岩区典型矿床 |
3.2.1 达达肯乌拉山铜铅锌矿床 |
3.2.2 孔雀沟-哈布其格钼(铜)金多金属矿床 |
第4章 区域铜铅锌银多金属成矿作用及成矿规律 |
4.1 柴周缘成矿带的时空结构 |
4.2 火山岩与成矿关系解析 |
4.3 柴周缘印支早期陆相火山岩区多金属成矿作用 |
4.4 柴周缘印支晚期陆相火山岩区银多金属成矿作用 |
4.4.1 幔源C-H-O流体与银、金元素的关系 |
4.4.2 成矿深源性问题探讨 |
4.4.3 东昆仑富Ag幔源流体向地壳活化运移成矿过程分析 |
4.4.4 成矿模式 |
4.4.5 矿床的剥蚀保存条件 |
4.5 柴周缘陆相火山岩区多金属矿床成矿作用及成矿规律总结 |
第5章 结论 |
参考文献 |
附录 |
作者简介及在学期间所取得的科研成果 |
致谢 |
(2)青海东昆仑西段卡尔却卡-阿克楚克赛地区镍、铜成矿作用研究(论文提纲范文)
中文摘要 |
abstract |
第1章 前言 |
1.1 选题意义及依托项目 |
1.2 研究区位置及概况 |
1.3 研究现状及存在问题 |
1.3.1 青海东昆仑西段研究现状 |
1.3.2 卡尔却卡-阿克楚克赛地区研究现状 |
1.3.3 主要成矿类型研究现状 |
1.3.4 存在主要问题 |
1.4 研究思路与方法 |
1.4.1 研究思路 |
1.4.2 研究方法 |
1.4.3 分析测试方法 |
1.5 完成的主要实物工作量 |
1.6 取得主要认识 |
第2章 区域地质背景 |
2.1 大地构造位置及构造分区 |
2.2 区域地层 |
2.2.1 古-中元古界 |
2.2.2 新元古界 |
2.2.3 下古生界 |
2.2.4 上古生界 |
2.2.5 中生界 |
2.2.6 新生界 |
2.3 区域构造 |
2.3.1 昆南断裂 |
2.3.2 昆中断裂 |
2.3.3 昆北断裂 |
2.3.4 柴达木南缘断裂 |
2.3.5 阿尔金断裂 |
2.3.6 哇洪山-温泉断裂 |
2.3.7 黑山-那陵格勒河断裂 |
2.4 区域岩浆岩 |
2.4.1 前晋宁期 |
2.4.2 晋宁期 |
2.4.3 加里东期 |
2.4.4 海西-印支早期 |
2.4.5 印支期晚 |
2.5 区域矿产 |
第3章 东昆仑造山带构造演化研究 |
3.1 始太古代-古元古代古陆核的证据 |
3.2 中-新元古代岩浆-构造事件 |
3.2.1 柴达木南缘岩浆-构造事件——“金水口岩群”时代与构造属性 |
3.2.2 昆南岩浆-构造事件——万宝沟大洋玄武岩高原形成 |
3.3 加里东早期构造体系的形成 |
3.3.1 柴达木南缘沟-弧-盆体系(西太平洋型活动陆缘) |
3.3.2 万宝沟玄武岩高原沟-弧体系 |
3.4 加里东晚期-海西早期万宝沟玄武岩拼贴-洋壳板片断离 |
3.4.1 洋壳深俯冲-板片断离-软流圈上涌作用 |
3.4.2 万宝沟玄武岩的拼贴 |
3.5 海西晚期-印支早期安第斯型造山活动 |
3.6 印支晚期-燕山期岩石圈拆沉和底侵作用 |
3.7 燕山末期-喜马拉雅期区域隆升作用 |
第4章 典型矿床研究 |
4.1 阿克楚克赛岩浆铜镍硫化物矿床 |
4.1.1 矿区地质特征 |
4.1.2 矿床地质特征 |
4.1.3 成岩成矿时代与地球化学特征 |
4.1.4 同位素特征 |
4.1.5 岩浆源区与演化 |
4.1.6 成矿作用研究 |
4.2 阿克楚克赛斑岩型矿化(点) |
4.2.1 矿床地质特征 |
4.2.2 岩石年代学及与地球化学特征 |
4.2.3 成矿作用研究 |
4.3 卡尔却卡A区中高温热液脉-隐爆角砾岩壳型矿床 |
4.3.1 矿区地质特征 |
4.3.2 矿床地质特征 |
4.3.3 岩石年代学及地球化学研究 |
4.3.4 矿床地球化学特征 |
4.3.5 成矿年代学研究 |
4.3.6 成矿作用研究 |
4.4 卡尔却卡B区矽卡岩型矿床 |
4.4.1 矿区地质特征 |
4.4.2 矿床地质特征 |
4.4.3 侵入岩年代学及地球化学特征 |
4.4.4 矿床地球化学特征 |
4.4.5 成矿年代学研究 |
4.4.6 成矿作用研究 |
第5章 区域成矿规律 |
5.1 成矿地质条件 |
5.1.1 地层条件 |
5.1.2 构造条件 |
5.1.3 岩浆岩条件 |
5.2 矿床类型与空间分布 |
5.2.1 岩浆铜镍硫化物矿床 |
5.2.2 斑岩型矿床 |
5.2.3 矽卡岩型-中高温热液脉型矿床 |
5.3 成矿时代、构造背景与成矿模式 |
5.3.1 成矿时代划分 |
5.3.2 构造背景与动力学模型 |
5.4 矿床区域保存条件及矿床空间分布 |
5.4.1 昆中南带保存条件 |
5.4.2 昆中北带保存条件 |
5.5 找矿潜力及找矿方向 |
5.5.1 岩浆铜镍硫化物矿床 |
5.5.2 岩浆热液型铜铅锌多金属矿床 |
结论 |
参考文献 |
取得的科研成果 |
致谢 |
(3)中-南阿尔金地区中-新元古代物质组成、年代学及构造演化(论文提纲范文)
摘要 |
ABSTRACT |
第一章 前言 |
1.1 .选题背景及研究意义 |
1.2 .研究现状及存在问题 |
1.2.1 .中-新元古代全球地质事件与Rodinia超大陆研究现状 |
1.2.2 .阿尔金地区前寒武纪地质研究现状 |
1.3 .研究内容及方法 |
1.3.1 .研究内容 |
1.3.2 .研究方法 |
1.4 .实验测试分析方法 |
1.4.1 .LA-ICP-MS锆石U-Pb测年 |
1.4.2 .锆石Lu-Hf同位素分析 |
1.4.3 .全岩主、微量元素分析 |
1.5 .完成工作量 |
第二章 区域地质概况 |
2.1 .阿北地块 |
2.2 .北阿尔金(红柳沟-拉配泉)古生代俯冲混杂岩带 |
2.3 .中阿尔金(米兰河-金雁山)地块 |
2.4 .南阿尔金(茫崖)古生代俯冲碰撞混杂岩带 |
第三章 南阿尔金杂岩带前寒武纪副变质岩系研究 |
3.1 .副变质岩系岩石建造及野外地质 |
3.2 .副变质岩系锆石U-Pb年代学及地层时代 |
3.2.1 .副变质岩系锆石U-Pb年代学 |
3.2.2 .副变质岩系形成时代 |
3.3 .锆石Hf同位素 |
3.4 .南阿尔金与中阿尔金接触关系 |
3.5 .小结 |
第四章 中阿尔金地块塔昔达坂群研究 |
4.1 .塔昔达坂群岩石建造 |
4.1.1 .巴什考供地区 |
4.1.2 .尧勒萨依地区 |
4.1.3 .卡尔恰尔地区 |
4.1.4 .库如克萨依地区 |
4.2 .塔昔达坂群构造变形 |
4.3 .锆石U-Pb年代学及地层时代 |
4.3.1 .锆石U-Pb年代学 |
4.3.2 .地层时代 |
4.4 .锆石Hf同位素 |
4.5 .岩石地球化学特征 |
4.6 .小结 |
第五章 中阿尔金地块索尔库里群研究 |
5.1 .索尔库里群岩石建造 |
5.1.1 .冰沟南地区 |
5.1.2 .乙亚拉克山地区 |
5.1.3 .阿斯腾塔格地区 |
5.1.4 .金雁山地区 |
5.2 .索尔库里群沉积环境 |
5.3 .索尔库里群构造变形特征 |
5.4 .锆石U-Pb年龄学及地层时代 |
5.4.1 .锆石U-Pb年代学 |
5.4.2 .地层时代 |
5.5 .碎屑锆石Hf同位素特征 |
5.6 .小结 |
第六章 巴什库尔干岩群重新厘定及意义 |
6.1 .野外地质特征 |
6.2 .构造变形特征 |
6.3 .新元古代中-晚期沉积记录 |
6.3.1 .野外地质及岩相学特征 |
6.3.2 .U-Pb年代学 |
6.3.3 .形成时代 |
6.4 .小结 |
第七章 阿尔金新元古代岩浆作用 |
7.1 .新元古代早期岩浆事件 |
7.1.1 .野外地质及岩相学 |
7.1.2 .锆石U-Pb年代学 |
7.1.3 .锆石Lu-Hf同位素 |
7.1.4 .全岩地球化学 |
7.1.5 .岩石成因及源区性质 |
7.2 .新元古代中-晚期岩浆事件 |
7.2.1 .岩相学 |
7.2.2 .锆石U-Pb年代学和Hf同位素 |
7.2.3 .全岩地球化学 |
7.2.4 .岩石成因及源区性质 |
7.3 .小结 |
第八章 沉积背景及物源分析 |
8.1 .沉积背景分析 |
8.1.1 .塔昔达坂群与阿尔金杂岩副变质岩系 |
8.1.2 .索尔库里群 |
8.2 .物源分析 |
8.2.1 .中元古代岩浆事件分布与沉积源区 |
8.2.2 .塔昔达坂群与阿尔金杂岩副变质岩 |
8.2.3 .索尔库里群 |
8.2.4 .巴什库尔干群 |
8.3 .小结 |
第九章 阿尔金中元古代晚期-新元古代构造演化及全球事件对比 |
9.1 .构造变形序列及动力学背景讨论 |
9.2 .阿尔金中元古代晚期-新元古代构造演化 |
9.3 .阿尔金与柴达木地块的关系 |
9.4 .阿尔金地块与全球事件对比 |
第十章 主要结论与不足 |
10.1 .主要认识与结论 |
10.2 .存在不足 |
参考文献 |
附录 |
致谢 |
作者简介 |
(4)东帕米尔地区古特提斯演化及其构造意义 ——来自花岗质岩石的证据(论文提纲范文)
摘要 |
Abstract |
第1章 引言 |
1.1 选题背景 |
1.2 研究现状 |
1.2.1 东帕米尔高原构造划分 |
1.2.2 东帕米尔地区花岗岩研究现状 |
1.3 关键科学问题 |
1.4 研究内容与研究方法 |
1.5 资助项目及完成工作量 |
第2章 区域地质概况 |
2.1 区域构造 |
2.2 区域地层概况 |
2.3 区域岩浆活动 |
第3章 样品采集与实验方法 |
3.1 野外样品采集 |
3.2 锆石U–Pb年代学分析 |
3.3 全岩主微量元素分析 |
3.4 全岩Sr-Nd同位素分析 |
3.5 锆石原位Hf同位素分析 |
第4章 东帕米尔石炭纪花岗岩岩石成因及其构造意义 |
4.1 岩体地质及岩相学 |
4.2 年代学 |
4.3 锆石原位Hf同位素 |
4.4 全岩地球化学特征 |
4.5 全岩Sr-Nd同位素 |
4.6 岩石成因及构造环境讨论 |
4.6.1 包体形成模式 |
4.6.2 岩石成因 |
4.6.3 构造环境 |
4.7 构造意义 |
4.8 小结 |
第5章 东帕米尔晚三叠世花岗岩岩石成因及其构造意义 |
5.1 岩体地质及岩相学 |
5.2 年代学 |
5.3 锆石原位Hf同位素 |
5.4 全岩地球化学特征 |
5.5 全岩Sr-Nd同位素 |
5.6 岩石成因 |
5.6.1 塔合曼岩体成因 |
5.6.2 塔什岩体成因 |
5.6.3 构造环境 |
5.7 构造意义 |
5.8 小结 |
第6章 帕米尔和青藏高原地区古特提斯洋构造域 |
6.1 东帕米尔双古特提缝合带 |
6.2 青藏高原及邻区古特提缝合带 |
6.3 中帕米尔-北羌塘-印支块体和相邻块体间的斜向汇聚 |
6.4 小结 |
第7章 缝合带构造属性对高原新生代变形模型的限定 |
7.1 喀喇昆仑断裂 |
7.1.1 Aksu-Rangkul断裂 |
7.1.2 辛迪-瓦恰断裂 |
7.2 喀喇昆仑断裂新生代走滑错距 |
7.3 小结 |
第8章 结论及存在问题 |
8.1 结论 |
8.2 存在问题 |
致谢 |
参考文献 |
附录 |
个人简历、攻读学位期间的研究成果 |
(5)西藏物玛地区始新世流纹岩的岩石成因及地质意义(论文提纲范文)
中文摘要 |
abstract |
第1章 引言 |
1.1 研究背景及选题依据 |
1.2 研究现状及存在问题 |
1.3 研究内容 |
1.4 技术路线 |
1.5 实物工作量 |
第2章 地质背景 |
2.1 区域地质背景 |
2.1.1 拉萨地体 |
2.1.2 羌塘地体 |
2.2 研究区地质概况 |
2.2.1 地层 |
2.2.2 岩浆岩 |
2.2.3 美苏组流纹岩 |
第3章 实验测试方法 |
3.1 锆石U-Pb定年 |
3.2 锆石Lu-Hf同位素测试 |
3.3 全岩地球化学测试 |
3.4 全岩Sr-Nd同位素测试 |
第4章 实验测试结果 |
4.1 锆石U-Pb定年 |
4.2 锆石Lu-Hf同位素 |
4.3 全岩地球化学 |
4.4 全岩Sr-Nd同位素 |
第5章 物玛始新世流纹岩的岩石成因 |
5.1 青藏高原中部始新世岩浆岩分布 |
5.2 物玛始新世流纹岩岩石成因 |
第6章 物玛始新世流纹岩构造背景:下地壳通道流 |
第7章 结论 |
参考文献 |
作者简介及在学期间所取得的科研成果 |
致谢 |
(6)闽西南永定—德化地区早白垩世花岗质岩石成因与铁—钼成矿作用(论文提纲范文)
摘要 |
abstract |
第1章 前言 |
1.1 选题背景 |
1.2 研究现状与存在的问题 |
1.2.1 华南晚中生代岩浆与成矿作用研究现状 |
1.2.2 闽西南晚中生代岩浆作用研究现状 |
1.2.3 闽西南晚中生代成矿作用研究现状 |
1.2.4 存在的问题 |
1.3 研究内容与技术路线 |
1.3.1 研究内容 |
1.3.2 技术路线 |
1.4 完成工作量 |
1.5 实验分析方法 |
1.5.1 锆石U-Pb测年 |
1.5.2 锆石Lu-Hf同位素测定 |
1.5.3 辉钼矿Re-Os年龄测定 |
1.5.4 全岩主量和微量元素分析 |
1.5.5 全岩Sr-Nd同位素测定 |
1.5.6 电子探针分析 |
第2章 区域地质背景 |
2.1 区域地层 |
2.1.1 前泥盆系基底岩系 |
2.1.2 上泥盆统-中三叠统岩系 |
2.1.3 中新生代陆相碎屑及火山岩系 |
2.2 侵入岩 |
2.2.1 前中生代侵入岩 |
2.2.2 早中生代侵入岩 |
2.2.3 晚中生代侵入岩 |
2.3 区域构造 |
第3章 早白垩世花岗岩类岩石学特征 |
3.1 十二排岩体 |
3.2 大排岩体 |
3.3 永福复式岩体 |
3.4 洛阳岩体 |
3.5 潘田岩体 |
第4章 早白垩世花岗岩类年代学特征 |
4.1 十二排岩体年代学特征 |
4.2 大排岩体年代学特征 |
4.3 永福复式岩体年代学特征 |
第5章 早白垩世花岗岩类岩石成因 |
5.1 十二排岩体地球化学特征与岩石成因 |
5.1.1 元素地球化学特征 |
5.1.2 锆石Lu-Hf同位素特征 |
5.1.3 岩石成因及源区性质 |
5.2 大排岩体地球化学特征与岩石成因 |
5.2.1 元素地球化学特征 |
5.2.2 锆石Lu-Hf同位素特征 |
5.2.3 全岩Sr-Nd同位素特征 |
5.2.4 岩石成因及岩浆源区性质 |
5.3 永福复式岩体地球化学特征与岩石成因 |
5.3.1 元素地球化学特征 |
5.3.2 锆石Lu-Hf同位素特征 |
5.3.3 矿物学特征 |
5.3.4 岩石成因及源区性质 |
5.3.5 各单元岩石的成因联系 |
第6章 典型铁钼矿床特征 |
6.1 龙岩马坑铁(钼)矿 |
6.1.1 矿区地质特征 |
6.1.2 矿床地质特征 |
6.1.3 成矿物质来源 |
6.1.4 成矿时代 |
6.1.5 矿床成因 |
6.2 永定大排铁铅锌(钼)矿床 |
6.2.1 矿区地质特征 |
6.2.2 矿体特征 |
6.2.3 围岩蚀变特征 |
6.2.4 矿物共生组合与期次 |
6.2.5 成矿时代 |
6.2.6 矿床成因 |
6.3 武平十二排钼矿 |
6.3.1 矿区地质特征 |
6.3.2 矿体特征 |
6.3.3 蚀变与矿化特征 |
6.3.4 成矿时代 |
6.3.5 矿床成因 |
6.4 漳平洛阳铁(钼)多金属矿床 |
6.4.1 矿区地质特征 |
6.4.2 矿床地质特征 |
6.4.3 成矿物质来源 |
6.4.4 成矿时代 |
6.4.5 矿床成因 |
6.5 安溪潘田—德化阳山铁矿床 |
6.5.1 潘田铁矿床 |
6.5.2 德化阳山铁矿 |
6.6 马坑外围铁(钼)矿化点地质特征及矿化时代 |
6.6.1 竹子炉钼矿点 |
6.6.2 山坪头铁多金属矿点 |
6.7 永福岩体外围矿化特征及及成矿年代学研究 |
6.7.1 主要地质矿化特征 |
6.7.2 矿化时代 |
第7章 早白垩世花岗岩类与铁钼成矿作用 |
7.1 早白垩世花岗岩类与铁钼多金属矿床时空结构 |
7.2 永定—德化早白垩世花岗质岩带与深部构造的空间关系 |
7.3 早白垩世岩浆作用与铁钼成矿的关系 |
7.3.1 岩浆起源与演化 |
7.3.2 成矿物质来源 |
7.3.3 花岗岩类地球化学特征对铁钼成矿作用的启示 |
7.4 闽西南与早白垩世早期花岗岩类相关铁钼多金属矿成矿系列的再认识 |
7.4.1 前人对于闽西南及邻区成矿系列的划分方案 |
7.4.2 闽西南铁钼多金属矿化作用成矿系列的重新厘定 |
第8章 结语 |
8.1 主要成果 |
8.2 存在问题及研究展望 |
致谢 |
参考文献 |
附录1 |
附录2 |
附录3 |
(7)柴北缘宗务隆构造带金属成矿地质环境及控制要素研究(论文提纲范文)
中文摘要 |
abstract |
第一章 引言 |
1.1 选题背景与研究意义 |
1.2 研究现状及存在问题 |
1.2.1 成矿的地质环境研究 |
1.2.2 砾岩容矿金矿床研究现状及存在问题 |
1.2.3 柴北缘宗务隆构造带研究现状及存在问题 |
1.3 研究内容 |
1.4 研究目标 |
1.5 拟解决的关键科学问题 |
1.6 研究方法 |
1.7 主要工作量 |
第二章 区域地质背景 |
2.1 大地构造位置 |
2.2 区域地层 |
2.2.1 柴北缘地层分区 |
2.2.2 宗务隆地层分区 |
2.2.3 南祁连地层分区 |
2.3 区域构造 |
2.3.1 褶皱 |
2.3.2 断裂 |
2.4 区域岩浆岩 |
2.5 区域矿产 |
2.6 区域地球化学特征 |
2.7 区域地球物理特征 |
第三章 宗务隆构造带成矿的地质环境 |
3.1 宗务隆构造带地层岩石建造特征 |
3.1.1 地层岩石单元 |
3.1.2 天峻南山蛇绿岩特征 |
3.2 侵入岩岩石学和地球化学特征 |
3.2.1 岩体地质和样品特征 |
3.2.2 分析方法 |
3.2.3 分析结果 |
3.2.4 岩石成因及岩浆起源 |
3.2.5 成岩构造环境 |
3.3 变形变质特征 |
3.4 宗务隆带构造-岩浆演化过程 |
3.5 成矿的地质环境分析 |
第四章 宗务隆构造带金属成矿的控制要素 |
4.1 蓄集铅银多金属矿床 |
4.1.1 矿床地质 |
4.1.2 样品和分析方法与结果 |
4.1.3 流体包裹体研究和S、Pb同位素组成的成矿学意义 |
4.1.4 矿床成因分析 |
4.2 尕日力根金矿床 |
4.2.1 矿床地质 |
4.2.2 样品采集和分析方法 |
4.2.3 测试结果分析与讨论 |
4.2.4 金的富集成矿过程分析 |
4.3 控矿要素分析 |
第五章 矿产预测 |
5.1 宗务隆构造带主攻矿床类型的找矿标志 |
5.2 成矿远景区 |
第六章 结论、创新点及存在问题 |
6.1 结论 |
6.2 创新点 |
6.3 存在问题 |
致谢 |
参考文献 |
附录 |
个人简历 |
论文发表 |
(8)中国西北地区蛇绿岩时空分布与构造演化(论文提纲范文)
1 西北地区蛇绿岩时空分布概况 |
1.1 空间分布 |
1.2 蛇绿岩时间序列 |
2 西北地区蛇绿岩特征 |
2.1 阿尔泰区 |
2.2 额尔齐斯对接带 |
2.3 准噶尔-中天山-北山区 |
2.3.1 准噶尔西部区 |
2.3.2 准噶尔东部卡拉麦里-伊吾蛇绿混杂岩带 |
2.3.3 准噶尔-吐哈盆地南缘 |
2.4 南天山-马鬃山对接带 |
(1)吉根蛇绿混杂岩带 |
(2)巴雷公-别迭里蛇绿混杂岩带 |
(3)中天山南缘蛇绿混杂岩带 |
(4)榆树沟-铜花山蛇绿混杂岩 |
2.5 塔里木-敦煌-北山南部区 |
2.6 阿尔金-祁连-北秦岭缝合带 |
2.6.1 红柳沟-拉配泉蛇绿混杂岩带 |
2.6.2 阿帕-茫崖蛇绿混杂岩带 |
2.6.3 北祁连缝合带 |
(1)九个泉-老虎沟蛇绿混杂岩带 |
(2)香毛山-大岔大坂蛇绿混杂岩带 |
2.6.4 达道尔基-拉脊山蛇绿混杂岩带 |
2.6.5 北秦岭蛇绿混杂岩带 |
2.7 柴达木及相邻区 |
2.8 西昆仑-木孜塔格-阿尼玛卿-勉略缝合带 |
2.9 北羌塘区 |
3 蛇绿岩与构造演化讨论 |
3.1 地壳早期演化阶段 |
3.2 超大陆裂解阶段 |
3.3 洋陆格局的形成与洋陆转化阶段 |
3.3.1 古亚洲构造域 |
3.3.2 特提斯构造域 |
4 结论 |
(9)青藏高原南拉萨亚地体晚白垩世-中新世岩浆岩成因机制及深部动力学过程(论文提纲范文)
摘要 |
ABSTRACT |
第一章 引言 |
1.1. 研究背景 |
1.2. 研究历史和现状 |
1.2.1. 冈底斯岩基 |
1.2.2. 林子宗火山岩 |
1.3. 科学问题 |
1.3.1. 南拉萨亚地体碰撞前晚白垩世岩浆岩的岩石成因问题 |
1.3.2. 南拉萨亚地体碰撞后晚渐新世-中新世埃达克质侵入体岩石成因问题 |
1.3.3. 南拉萨亚地体碰撞过程中古新世林子宗火山岩岩石成因问题 |
1.4. 研究内容与技术方案 |
1.5. 论文完成工作量 |
第二章 实验分析测试方法 |
2.1. 锆石U-Pb年代学分析测试方法 |
2.2. 全岩主-微量元素分析测试方法 |
2.3. 全岩Sr-Nd同位素分析测试方法 |
2.4. 全岩Mo同位素分析测试方法 |
第三章 地质背景 |
3.1. 区域构造格架 |
3.2. 青藏高原南拉萨亚地体 |
第四章 碰撞前南拉萨亚地体晚白垩世不同类型弧岩浆岩成因机制及深部动力学过程 |
4.1. 地质背景 |
4.1.1. 火山-沉积地层 |
4.1.2. 侵入岩 |
4.1.3. 构造单元 |
4.2. 南木林县闪长岩的岩相学、锆石U-Pb年代学和地球化学特征 |
4.2.1. 岩相学 |
4.2.2. 锆石U-Pb年代学 |
4.2.3. 岩石地球化学特征 |
4.3. 岩石成因 |
4.3.1. 地壳混染和分离结晶 |
4.3.2. 俯冲的大洋沉积物在弧岩浆岩中的印记 |
4.3.3. 混杂岩熔融形成碰撞前南木林晚白垩世的辉长岩、辉长闪长岩和闪长岩 |
4.4. 混杂岩在不同深度下熔融产生不同的弧岩浆岩 |
4.5. 深部动力学过程 |
第五章 碰撞后日喀则中新世埃达克质岩墙成因机制及深部动力学过程 |
5.1. 地质背景 |
5.1.1. 火山-沉积地层 |
5.1.2. 蛇绿岩单元 |
5.1.3. 构造单元 |
5.1.4. 侵入岩 |
5.2. 日喀则岩墙的岩相学、锆石U-Pb年代学和地球化学特征 |
5.2.1. 岩相学 |
5.2.2. 锆石U-Pb年代学 |
5.2.3. 岩石地球化学特征 |
5.3. 岩石成因 |
5.3.1. 富钾的岩墙 |
5.3.2. 富钠的岩墙 |
5.4. 壳-幔物质不同程度参与晚渐新世-中新世埃达克质岩石形成 |
5.5. 深部动力学过程 |
第六章 碰撞过程中林周盆地古新世典中组安山岩成因机制及深部动力学过程 |
6.1. 地质背景 |
6.1.1. 火山-沉积地层 |
6.1.2. 侵入岩 |
6.1.3. 构造单元 |
6.2. 林周盆地安山岩的岩相学、锆石U-Pb年代学和地球化学特征 |
6.2.1. 岩相学 |
6.2.2. 锆石U-Pb年代学 |
6.2.3. 岩石地球化学特征 |
6.3. 岩石成因 |
6.3.1. 蚀变、分离结晶以及地壳混染的影响 |
6.3.2. 判别俯冲的大洋沉积物加入 |
6.3.3. 典中组安山岩的岩石成因 |
6.3.4. 变化的Mo同位素指示了典中组安山岩是由混杂岩熔融形成 |
6.4. 深部动力学过程 |
第七章 南拉萨亚地体晚白垩世-中新世岩浆演化的深部动力学过程 |
第八章 主要结论以及下一步工作计划 |
8.1. 主要结论 |
8.2. 下一步工作计划 |
参考文献 |
附录 |
致谢 |
作者简介、在学期间发表的学术论文 |
(10)三江特提斯造山带岩石圈物质结构及其对斑岩成矿约束(论文提纲范文)
摘要 |
Abstract |
1 前言 |
1.1 选题背景与项目依托 |
1.1.1 选题背景 |
1.1.2 项目依托 |
1.2 研究现状与存在问题 |
1.2.1 研究现状 |
1.2.2 存在问题 |
1.3 研究目的与意义 |
1.4 研究内容与技术路线 |
1.4.1 研究内容 |
1.4.2 技术路线 |
1.5 数据分析测试方法 |
1.5.1 数据的采集及数据源 |
1.5.2 全岩主微量分析 |
1.5.3 锆石U-Pb定年及Hf同位素分析 |
1.5.4 同位素填图方法及流程 |
1.5.5 同位素等值线填图方法 |
1.6 完成工作量 |
2 区域地质背景 |
2.1 主要地块和缝合带 |
2.1.1 主要地块 |
2.1.2 主要缝合带 |
2.2 构造演化 |
2.2.1 原特提斯阶段 |
2.2.2 古特提斯阶段 |
2.2.3 中特提斯阶段 |
2.2.4 新特提斯阶段 |
2.2.5 碰撞造山阶段 |
2.3 岩浆岩 |
2.3.1 早古生代岩浆 |
2.3.2 二叠世-早三叠世岩浆 |
2.3.3 中-晚三叠世岩浆 |
2.3.4 早白垩世岩浆 |
2.3.5 晚白垩世岩浆 |
2.3.6 古新世-早始新世岩浆 |
2.3.7 中始新世-早渐新世岩浆 |
2.4 区域矿产 |
3 三期含矿斑岩地质地球化学特征 |
3.1 晚三叠世的含矿斑岩体特征 |
3.1.1 年代学特征 |
3.1.2 岩石地球化学特征 |
3.1.3 Hf同位素特征 |
3.1.4 岩石成因与源区 |
3.2 晚白垩世含矿斑岩体特征 |
3.2.1 岩石地球化学特征 |
3.2.2 岩石成因与源区 |
3.3 古近纪含矿斑岩体特征 |
3.3.1 年代学特征 |
3.3.2 岩石地球化学特征 |
3.3.3 Hf同位素特征 |
3.3.4 岩石成因与源区 |
4 典型斑岩型矿床 |
4.1 晚三叠世典型斑岩型矿床 |
4.1.1 矿区地层 |
4.1.2 矿区构造 |
4.1.3 侵入岩 |
4.1.4 矿化蚀变 |
4.2 晚白垩世典型斑岩型矿床 |
4.2.1 矿区地层 |
4.2.2 矿区构造 |
4.2.3 侵入岩 |
4.2.4 矿化蚀变 |
4.3 新生代典型斑岩型矿床 |
4.3.1 矿区地层 |
4.3.2 矿区构造 |
4.3.3 侵入岩 |
4.3.4 矿化蚀变 |
5 三江特提斯三维地壳架构与斑岩成矿 |
5.1 地球化学与同位素填图结果 |
5.1.1 锆石U-Pb年龄填图结果 |
5.1.2 锆石Hf同位素填图结果 |
5.1.3 全岩Nd同位素填图结果 |
5.1.4 全岩Nb/Ta地球化学填图结果 |
5.1.5 全岩V/Sc地球化学图结果 |
5.1.6 全岩Sr/Y地球化学填图结果 |
5.1.7 全岩Eu地球化学填图结果 |
5.2 讨论 |
5.2.1 三江特提斯造山带岩石圈物质架构 |
5.2.2 冈瓦纳和华夏大陆构造边界 |
5.2.3 三江特提斯造山带新生地壳形成和改造 |
5.2.4 三维地壳架构与斑岩成矿耦合关系 |
5.2.5 西部青藏高原地壳架构简单对比 |
6 结论 |
致谢 |
参考文献 |
附录 |
四、Isotopic characteristics of shoshonitic rocks in eastern Qinghai-Tibet Plateau: Petrogenesis and its tectonic implication(论文参考文献)
- [1]青海柴达木盆地周缘显生宙陆相火山岩区多金属成矿作用研究[D]. 李浩然. 吉林大学, 2021(01)
- [2]青海东昆仑西段卡尔却卡-阿克楚克赛地区镍、铜成矿作用研究[D]. 赵拓飞. 吉林大学, 2021(01)
- [3]中-南阿尔金地区中-新元古代物质组成、年代学及构造演化[D]. 郝江波. 西北大学, 2021(12)
- [4]东帕米尔地区古特提斯演化及其构造意义 ——来自花岗质岩石的证据[D]. 汤文坤. 中国地质科学院, 2021
- [5]西藏物玛地区始新世流纹岩的岩石成因及地质意义[D]. 张博川. 吉林大学, 2021(01)
- [6]闽西南永定—德化地区早白垩世花岗质岩石成因与铁—钼成矿作用[D]. 袁远. 中国地质大学(北京), 2020
- [7]柴北缘宗务隆构造带金属成矿地质环境及控制要素研究[D]. 陈敏. 中国地质大学(北京), 2020(04)
- [8]中国西北地区蛇绿岩时空分布与构造演化[J]. 李智佩,吴亮,颜玲丽. 地质通报, 2020(06)
- [9]青藏高原南拉萨亚地体晚白垩世-中新世岩浆岩成因机制及深部动力学过程[D]. 闫浩瑜. 西北大学, 2020(01)
- [10]三江特提斯造山带岩石圈物质结构及其对斑岩成矿约束[D]. 杜斌. 中国地质大学(北京), 2020