一、高等数学教学中数学模型案例运用初探(论文文献综述)
白守英[1](2021)在《案例教学在高等数学教学中的运用研究》文中认为一些学生学习高等数学有一定的难度,数学教师应积极运用案例教学,提升课堂教学质量与效率,培养学生独立思考与创新能力。文章对案例教学进行概述,分析案例教学的特征,指出教学案例的选择、构建数学思维、合理实施实验教学、综合测试、注重知识的生成过程、课后案例教学等是高等数学教学中应用案例教学的主要策略。
乔剑敏,李沃源,张军,马生昀[2](2021)在《案例教学在高等数学教学中的应用研究》文中指出本文结合我校学生特点以及作者多年一线教学经验,分析了高等数学教学中存在的问题以及将案例教学法应用于高等数学教学的优点.阐述了案例教学的准备过程包括编写教学案例库、构思互动场景、培养优秀的案例执行者等方面.通过研究高等数学案例教学的实施步骤:案例预习、案例展示、案例讨论、课堂总结等重要问题,提高了我校高等数学课程的教学质量.
刘家新[3](2021)在《“课程思政”视域下初中数学教学设计研究 ——以函数教学为例》文中研究指明立德树人是我国教育的根本任务,加强对学生的思想政治教育,思想政治课是主渠道,在各学科教育中渗透思想政治教育也责无旁贷。在学科教学中融入思想政治的元素,使学科课程在育人中发挥应有的作用,是新时代教育工作者的使命。在文献研究的基础上,研究践行课程思政的理论模型,即确立辩证唯物主义观教育、家国情怀和爱国主义精神的教育、社会责任感教育、优良品德和个性品质教育这四个维度,从这四个维度出发将课程思政融入到初中数学教学设计之中,在数学教学中对学生进行思想政治教育。运用问卷调查法和访谈法,了解当前在初中数学教学中践行课程思政的现状;结合教学内容和学生特点,以初中函数教学为例,探索“课程思政”视域下的初中数学教学设计,并进行实践和效果检验,提出在初中数学教学中践行课程思政方法与途径。在初中数学教学中践行课程思政是必要的和可行的,将数学知识的学习与思政教育有机结合起来,既能实现在教学过程中对学生进行思想政治教育,又能通过思政案例的呈现激发学生的数学学习兴趣,调动学习的积极性,有助于对于数学专业知识的掌握。在初中数学教学设计中践行课程思政:学校要加强对课程思政教学改革的领导,建立科学的评价体系,实现课程思政资源和案例共享,保证课程思政的践行效果;教师要加强师德修养,树立在教学中践行课程思政的教育信念,深度挖掘思政元素,并在教学各环节中落实。
孙贺[4](2021)在《课程思政视域下高中数学教学研究 ——以“函数模型的应用”专题为例》文中研究指明“课程思政”对于落实立德树人根本任务,发挥好每门课程的育人功能,构建全员全程全方位育人格局,培养德智体美劳全面发展的社会主义建设者和接班人具有重要的作用。以高中“函数模型的应用”专题的教学内容为例,探索专题教学中融入课程思政的问题。在文献研究基础上,在数学教学中落实课程思政的目标,划分维度为数学品格、文化素养和价值理念三个一级指标,在每个一级指标下又设置四个二级指标;编制学生调查问卷、教师访谈提纲,对课程思政在高中数学课程中的实施情况展开调查;完成课程思政视域下的“函数模型的应用”专题教学设计与实践,分析对数学学习成绩的影响,并提出教学建议。研究表明:(1)编制的调查问卷折半信度、内容效度以及结构效度较好,可作为测量高中数学教学融入课程思政水平的调查工具;(2)实验班和对照班的学习成绩不存在显着性差异,即教学中落实课程思政目标不会对学生成绩产生消极影响;(3)参与教学实践的学生数学品格、文化素养、价值理念三个一级维度的水平均有所提升,其中数学品格的提升效果最明显,文化素养、价值引领的显着性效果依次减弱,育人效果得以彰显。践行课程思政理念,数学教学应做好以下工作:(1)丰富课程思政交流形式,提升教师思政育人意识;(2)以数学为基点联系社会热点,拓宽教师思政储备;(3)分阶段制定思政育人目标,学科间共享思政成果;(4)利用信息技术创新课堂形式,于互动中达到育人实效;(5)弘扬优秀文化与先进事迹,营造良好思政环境;(6)质性评价与定量评价相结合,细化思政考核方式。
王雪[5](2021)在《基于APOS理论的平面向量教学研究》文中认为平面向量具有深刻的数学内涵、丰富的物理背景,具有“数与形”双重属性,是一个良好的数形结合载体,是一个有效的解题工具。但是,实际教学中由于平面向量内容过于抽象,致使学生难以理解其本质属性,学习效果不理想。因此,探寻合适的教学模式改善学生的学习现状是十分必要的。APOS理论是杜宾斯基提出的一种数学学习理论,其基本假设是:数学知识是学生在解决所感知的数学问题的过程中获得的。学生学习数学概念会经过“活动”“过程”“对象”这三个阶段,最后形成认知“图式”,在这个过程中学生学到的不只是知识本身的定义,更能体会到知识的形成过程,理解数学知识的本质。因此,在平面向量教学中应用APOS理论是具有理论意义的。本文采取的研究方法有文献研究法、问卷调查法、访谈法、案例分析法。首先对于APOS理论、平面向量教学相关的文献进行综述分析,形成对本研究的科学性认识;然后对APOS理论的来源、内涵、特点进行分析,对平面向量内容进行教材分析与《课程标准》解读,为论证APOS理论应用于平面向量教学的可行性与必要性提供理论依据;接下来,笔者通过测试卷、访谈的形式从学生、教师这两个视角探求平面向量教学现状,并针对发现的问题进行归因分析,为后文教学策略的制定、教学案例的设计提供实证依据。调查结果表明,学生对平面向量知识的理解程度基本能够达到操作水平、过程水平,很少能达到对象水平、图式水平;学生上一阶段的学习效果会对下一阶段的学习产生影响;学生对平面向量的符号表征理解较好,坐标表征次之,几何表征最差。同时从学生的试卷作答情况来看,学生对平面向量基本概念、法则、性质、定理等基础知识的掌握程度不够,综合应用知识能力不足,且存在粗心大意、马虎等不良的学习习惯。而教师对平面向量的教育价值普遍认可,尤为注重“向量运算”的教学,但教师对教材以及《课程标准》的重视程度不够,教学方式单一,对数学学习理论的认知度不高。最后,通过对两篇以APOS理论为指导的高中数学教学案例进行分析,得出基于APOS理论的平面向量教学策略:操作阶段的教学要设计合适的教学活动丰富学生的感性经验,并注重“类比”思想的运用;过程阶段需运用问题驱动的方式推动学生的思维发展;对象阶段需引入例题训练、变式训练,帮助学生掌握数学对象的本质;图式阶段需关注学生对知识图式的建构。并基于以上教学策略给出具体的教学设计案例,供一线数学教师参考。
邹梦姗[6](2021)在《基于APOS理论的高中生物学“遗传与进化”模块核心概念教学实践研究》文中进行了进一步梳理由杜宾斯基及其团队提出的APOS理论是数学概念教学中的理论,其对学生主动建构概念的思维过程进行了解释。该理论指出,学生要经历操作或活动阶段(Action)、过程阶段(Process)、对象阶段(Object)、图式阶段(Schema)的思维建构才能真正习得概念,而理论的名称就取自每个单词的首字母。APOS理论遵循学生的认知规律,强调学生在概念学习中的自主建构,与生物学中核心概念教学的理念不谋而合。基于调查现状,笔者对“遗传与进化”模块的核心概念进行梳理,分析APOS理论下的组成核心概念的具体概念的教学设计原则及各阶段设计要领,提出APOS理论下的教学过程模式6环节:(1)设置情境,趣味导入;(2)分析问题,初识概念;(3)感知内化,概念初建;(4)反思整合,巩固应用;(5)抽象本质,符号表征;(6)概念联系,形成体系。将6个环节用于指导APOS理论下的生物学概念教学设计,再将教学设计应用于实践教学,运用相关量表分析学生在实践前后学习水平及课堂参与度的变化,再结合成绩来检测实践研究效果。本研究选取了在课堂表现、学习成绩、学习态度、学习方法及认知能力均无显着差异的两个班作为研究对象,分别开展常规教学和APOS理论下的核心概念教学。经过一个学期的教学实践,从课堂表现、学习成绩、学习态度、学习方法及认知能力来评价实践效果。在课堂表现方面,实验班学生的课前准备、课堂倾听、课堂互动及目标达成情况都有所改善或提升;在成绩方面,从教学实践后的期末成绩来分析,实验班较对照班有显着提高(P=0.004<0.05);在学习态度、认知能力方面,实验班学生均比对照班学生有显着改善或提高(P=0.013<0.05,P=0.009<0.05);实验班学生在学习方法上与对照班差异不显着,但在实践后与实践前对比有一定的改善。综合实践的研究结果,得出以下研究结论:(1)APOS理论下的生物学核心概念教学符合学生期待的教学方式;(2)基于APOS理论建构教学过程中的模式环节对指导教学设计有参考意义;(3)APOS理论下的核心概念教学方式能有效提高学生的学习水平及课堂参与度。
李超[7](2021)在《“高观点”下高中导数解题及教学研究》文中研究说明随着普通高中数学课程改革不断深入,《普通高中数学课程标准(2017年版2020年修订)》指出数学教师要理解与高中数学关系密切的高等数学内容,能够从更高的观点理解高中数学知识的本质,这对从事数学教育工作者的本体性知识(学科知识)提出了更高的要求.导数是连接高等数学和初等数学的重要桥梁,且部分导数试题的命制具有一定高等数学的背景.因此,这项研究选取高中导数内容,在“高观点”的指导下重点研究以下三个问题:(1)揭示部分高考导数试题具有的高等数学背景;(2)如何将高等数学的思想、观点和方法渗透到中学数学中去;(3)通过具体案例展示如何在“高观点”的指导下进行高中导数内容的解题和教学.这项研究通过对高中教师和学生的问卷调查,在“高观点”指导下研究高中导数内容的解题和教学,得出了以下两方面的结论:在解题方面,整理分析了近十年(以全国卷为主)具有高等数学背景的高考导数试题,导数试题的命题背景主要有四个方面:以高等数学中的基本定义和性质为命题背景、以高等数学中的重要定理和公式为命题背景、以着名不等式为命题背景、以高等数学中的重要思想方法为命题背景;总结了用“高观点”解决高考导数试题时常犯的四类错误:知识性错误、逻辑性错误、策略性错误、心理性错误;提出五项解题方法:创设引理破难题、洛氏法则先探路、导数定义避超纲、构造函数显神通、多元偏导先找点.在教学方面,通过对高中学生和高中教师进行问卷调查分析,从前人研究的基础上,提出“高观点”下高中导数教学的三个特点:衔接性、选择性、引导性;认为“高观点”下高中导数的教学应遵循四项基本的教学原则:严谨性原则、直观性原则、因材施教原则、量力性原则;提出相应的五项教学策略:开发例题,拓展升华策略、引入四规则,知识呈现多样化策略、先实践操作,后说理策略、融合信息技术,直观解释策略、引导方向,自主学习策略.
王改珍[8](2021)在《职前数学教师专业知识结构及水平的实证研究》文中认为随着教师专业发展成为教师教育领域的研究热点,各国从对教师“量”的需求逐渐转变到对教师“质”的需求,其中一个核心的研究内容便是教师知识。教师知识是教师专业素质的重要组成部分,也是影响教师教学水平的重要因素。教师教育的质量决定着教育的质量,职前教师教育的质量又是确保教师教育质量的基础环节。职前教师需要具备怎样的专业知识结构和水平,才能满足高质量教育的人才需求,受到教育研究者和教育工作者的广泛关注。教师专业知识是教师专业发展的基础,对职前教师专业知识的研究可以反映教师专业知识的最初状态。本研究聚焦于职前数学教师的专业知识结构及水平,分为三个子问题:一、职前数学教师需要怎样的专业知识结构?通过访谈和调查,从一线教师的视角给出对合格数学教师需要具备的专业知识结构的看法,并将其作为职前数学教师专业知识结构的参考标准。该知识结构是教师主观层面的认识,也可称为教师期望的专业知识结构。二、职前数学教师专业知识的掌握水平如何?通过测试了解职前数学教师专业知识的现状,进而得出实际的专业知识结构,并利用水平划分描述职前数学教师专业知识的掌握程度。三、职前数学教师实际的专业知识结构与一线教师期望的专业知识结构是否一致?通过对比,探讨职前数学教师专业知识结构的合理性,进而明确职前数学教师未来的努力方向。本研究采用量化研究与质化研究相结合的方法,以量化研究为主,质化研究为辅。子问题一通过调查教师视角下各类专业知识的重要程度来了解合格数学教师需要的各类专业知识的权重情况。首先通过文献梳理和访谈构建出数学教师的专业知识框架,并以此编制调查问卷;然后对一线教师展开问卷调查,教师根据教学经验对各类专业知识进行赋权;最后根据调查数据的统计分析得出合格数学教师需要具备的专业知识结构,并通过访谈对量化结果进行补充和说明。子问题二通过测试了解职前数学教师专业知识的现状和掌握水平。首先通过整理历年教师资格考试《数学学科知识与教学能力》(高级中学)科目的真题,明确各类知识的考查比例、题型和分值;然后结合子问题一的调查结果,确定测试所考查的内容、题型及分值,对试题进行抽取、组合、制定评分标准;接着,选取1所部属师范大学、1所省属师范大学和2所省属师范学院的数学师范生作为调查对象,展开测试;最后根据测试数据的统计分析得出职前数学教师的实际专业知识结构及水平。子问题三是基于前两个子问题的数据分析结果,再结合教师访谈,探讨职前数学教师实际的专业知识结构、不同知识掌握水平下的职前数学教师专业知识结构与教师期望的专业知识结构的一致性和合理性。研究结论如下:(1)合格数学教师的专业知识结构中数学学科知识的权重最大。教师视角下的合格数学教师需要具备的三类专业知识按照权重大小依次是数学学科知识(45.20%)、数学教学知识(30.71%)、数学课程知识(24.09%)。该知识结构可划分为三种类型。不同群体教师对各类知识权重的看法基本一致。(2)职前数学教师对所考查的数学专业知识基本能够掌握。实际知识结构中数学学科知识的权重最大。参与本研究的职前数学教师专业知识的掌握程度由低到高可划分为四个水平:前水平、识记水平、关联水平和综合水平。不同类型学校的职前数学教师专业知识测试得分具有显着差异,得分由高到低分别为部属师范大学、省属师范大学、省属师范学院。(3)职前数学教师的实际知识结构中,各类知识的权重大小顺序与教师期望的专业知识结构一致,即职前数学教师的实际知识结构是合理的。知识掌握程度处在四个水平的职前数学教师的专业知识结构也是合理的。教师期望的学科知识权重低于职前数学教师的实际权重,教师期望的教学知识权重却高于职前数学教师的实际权重,导致这一现象的原因在于职前数学教师教学经验的缺乏。根据上述研究结论,对职前数学教师教育提出相关建议:(1)职前数学教师应以理论知识学习为主;(2)职前数学教师应提高教学知识储备。
沈中宇[9](2021)在《面向教师教育的数学知识研究 ——以S市高中数学教研员为例》文中研究表明百年大计,教育为本。教育大计,教师为本。教师培养的关键是教师教育,要改善教师教育的效果,教师教育者的作用无疑是至关重要的,因此,数学教师教育者在数学教师教育中发挥着重要的作用。近年来,数学教育研究者开始关注数学教师教育者的研究,其中,“面向教师教育的数学知识”(Mathematical Knowledge for Teaching Teachers,简称MKTT)理论为研究一般数学教师教育者所需要的数学知识提供了借鉴。但已有的研究中对于“面向教师教育的数学知识”仍然缺乏清晰准确的刻画,同时,相关研究主要集中在理论构建,相关的实证研究较少。基于以上原因,本文以面向教师教育的数学知识为研究主题,选取高中数学教研员作为研究对象,主要探讨以下三个研究问题:(1)构成面向教师教育的数学知识的要素有哪些?(2)高中数学教研员具备哪些面向教师教育的数学知识?(3)在数学教研活动中,高中数学教研员反映出哪些面向教师教育的数学知识?针对本研究的三个研究问题,将研究设计分为三个阶段,分别为文献分析与框架确立、问卷调查与深度访谈以及现场观察与案例分析。文献分析与框架确立阶段采用了专家论证法。首先通过文献分析梳理已有的数学教师教育者专业知识框架,接着通过对相关的成分和子类别的反复比较,构建初始的面向教师教育的数学知识框架,最后通过三轮专家论证得到最终的面向教师教育的数学知识框架。问卷调查与深度访谈阶段采用了问卷调查法和深度访谈法。其中选取了高中数学中重要的数学主题编制了调查问卷和访谈提纲,通过编码分析高中数学教研员的问卷回答和访谈实录,从而了解高中数学教研员具备的面向教师教育的数学知识。现场观察与案例分析采用了案例研究法。其中观察了不同的高中数学教研员的多次教研活动,在观察过程中对教研活动进行录音并在观测后对高中数学教研员进行访谈,对录音和访谈材料进行编码和统计,从而剖析高中数学教研员在教研活动中反映的面向教师教育的数学知识。本研究的基本结论是:1.构成面向教师教育的数学知识的要素包括4个成分与12个子类别。构成成分为学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识。学科内容知识包含的子类别为一般内容知识、专门内容知识和关联内容知识,教学内容知识包含的子类别为内容与学生知识、内容与教学知识和内容与课程知识,高观点下的数学知识包含的子类别为学科高等知识、学科结构知识和学科应用知识,数学哲学知识包含的子类别为本体论知识、认识论知识和方法论知识。2.高中数学教研员具备的面向教师教育的数学知识情况如下。(1)高中数学教研员在学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识4个成分中并不存在明显的短板;(2)高中数学教研员对不同知识成分的掌握存在一定差异,其中,在学科内容知识和教学内容知识2个方面掌握较好,而在高观点下的数学知识和数学哲学知识2个方面还有所欠缺;(3)高中数学教研员在各个知识成分中有以下具体理解:在学科内容知识方面,对于基本的概念、定理和公式的合理性以及不同概念、定理和公式之间的联系较为熟悉;在教学内容知识方面,对于学生有关特定数学内容学习的困难,不同数学内容的教授方式和相关数学内容在教科书中的编排理解较深;在高观点下的数学知识方面,能够对中学数学知识作出一定程度的推广、涉猎不同学科中数学知识的应用;在数学哲学知识方面,能够大致解释数学定义的基本作用和标准、数学研究的动力、数学证明的作用和价值以及数学的基本思想方法。(4)高中数学教研员在各个知识成分中有以下欠缺之处:在学科内容知识方面,对于定义的多元性、解释的多样性和联系的普遍性方面还有进步的空间;在教学内容知识方面,对于学生数学学习困难的细致理解、不同数学内容的深入教授和教学内容编排意图的全面考虑还有提升的余地;在高观点下的数学知识方面,从高观点理解中学数学知识、分析不同知识的联系和在不同学科中应用数学知识方面还有较多需要完善的地方;在数学哲学知识方面,还不能形成系统的理解。3.在数学教研活动中,高中数学教研员反映出的面向教师教育的数学知识情况如下。(1)高中数学教研员反映的面向教师教育的数学知识大部分属于教学内容知识和学科内容知识,小部分属于数学哲学知识和高观点下的数学知识。(2)高中数学教研员在数学教研活动中的主要知识来源为一般内容知识、内容与教学知识、学科高等知识和方法论知识。(3)高中数学教研员在数学教研活动中反映的面向教师教育的数学知识主要有:在学科内容知识方面有数学中的基本概念、定理、公式和性质及其由来、表征、证明及解释;不同数学概念、定理、公式之间的联系。在教学内容知识方面有学生对特定数学内容理解存在的困难;不同数学内容的引入、辨析、应用和小结的教学方法;特定数学内容在课程标准中的要求和在教科书中的编排。在高观点下的数学知识方面有中学数学课程中的数学概念在高等数学中的推广;高观点下不同数学概念之间的联系;数学知识在现代科学和实际生活中的应用。在数学哲学知识方面有对数学定义的认识;对数学认识过程的理解;推理论证在数学中的作用;数学研究的思想方法。本研究对于教师教育者专业标准的制订、数学教师教育者专业培训的设计和数学教师专业发展项目的规划有一定启示,后续可以在数学教师教育者的专业知识、数学教师教育者的专业发展和数学教师教育者的工作实践等方面进一步开展研究。
王楠[10](2021)在《高中函数概念“双线教学法”初探》文中研究说明对于高中函数概念教学的研究由来已久,不少学者从不同视角进行过研究。近年来,从现代高等数学的视角研究中学数学教学越来越受到重视,同时将数学文化融入到中学数学教学研究也受到了广泛的关注,中学数学教学的研究和实践焕发了新的活力并取得了良好的效果。新课标指出:教师要以数学学科核心素养为导向,引导学生把握数学内容的本质,认识数学课程的结构和体系,同时还要注重数学文化的渗透。基于此,本人针对高中函数概念教学特点,综合“高观点”数学教学理念和融入数学文化的教学策略,提出了高中函数概念“双线教学”的研究课题。高中函数概念“双线教学”更加关注学生心理特征,具备降低难度、减缓坡度、激发兴趣的特点,从教师教学需求和学生学习需求出发,以课堂教学和实际问题为载体,帮助师生解决函数概念教学过程中产生的难题,有效缓解了以往函数概念教学晦涩难懂的尴尬境地,更具可理解性和趣味性。本文先通过文献分析,对近年来函数概念教学研究概况进行了解和梳理。其次,对学校教学现状进行了调查,对“双线教学”可实施环境进行了摸排,得出了实施“双线教学”的可行和必要的结论。接着通过对课标的详细分析和对教材的对比研究,将教学内容和教学程度进行了深度了解。在前期准备工作完成的基础上,运用“双线教学”理念对函数概念一节进行教学设计。最后通过教学实践,对教学效果加以验证。通过学生数学学习兴趣和数学考试成绩两个指标对“双线教学”进行检验,得出了有效的结论,研究最后也指出了实践中的不足和实施建议。
二、高等数学教学中数学模型案例运用初探(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、高等数学教学中数学模型案例运用初探(论文提纲范文)
(1)案例教学在高等数学教学中的运用研究(论文提纲范文)
一、案例教学概述 |
二、案例教学的特征 |
三、案例教学在高等数学教学中的应用策略 |
1. 教学案例的选择 |
2. 构建起数学思维 |
3. 合理实施实验教学 |
4. 综合测试 |
5. 注重知识的生成过程 |
6. 课后案例教学 |
四、运用案例教学的注意事项 |
五、结语 |
(2)案例教学在高等数学教学中的应用研究(论文提纲范文)
1 高等数学教学过程中存在的问题 |
2 案例教学在高等数学中的必要性 |
2.1 激发数学学习的兴趣 |
2.2 数学问题形象化 |
2.3 提升教师业务能力 |
3 案例教学的准备 |
3.1 构建课堂教学的案例库 |
3.2 培养优秀的案例执行者 |
3.3 构思互动场景 |
4 高等数学案例教学的实施过程 |
4.1 案例预习 |
4.2 案例展示 |
4.3 案例讨论 |
4.4 课堂总结 |
4.5 反馈循环 |
5 内蒙古农业大学高等数学案例教学实践 |
6 结语 |
(3)“课程思政”视域下初中数学教学设计研究 ——以函数教学为例(论文提纲范文)
摘要 |
abstract |
1 绪论 |
1.1 问题提出 |
1.2 研究意义及目的 |
1.3 研究内容、研究方法和研究思路 |
1.4 研究重点、难点及创新点 |
1.5 论文结构 |
2 文献综述、核心概念界定与理论基础 |
2.1 文献综述 |
2.2 核心概念界定 |
2.3 理论基础 |
3 研究设计 |
3.1 研究假设 |
3.2 研究对象 |
3.3 研究工具 |
3.4 研究实施过程 |
3.5 研究中需要注意的问题 |
4 调查研究 |
4.1 问卷调查 |
4.2 教师访谈 |
4.3 践行课程思政存在的问题 |
5 教学设计 |
5.1 设计依据 |
5.2 框架与切入点 |
5.3 教学设计示例 |
6 教学实践 |
6.1 示例:“二次函数”第一节的第一课时 |
6.2 评析 |
6.3 效果对比分析 |
7 研究结论、建议与展望 |
7.1 研究结论 |
7.2 研究建议 |
7.3 研究不足 |
7.4 研究展望 |
参考文献 |
附录 |
附录1:初中数学教学中课程思政践行现状教师调查问卷 |
附录2:学生测试题(以二次函数为例) |
附录3:“课程思政”视域下初中数学教学设计研究教师访谈提纲 |
附录4:“课程思政”视域下初中数学教学设计研究学生访谈提纲 |
附录5:教师访谈示例 |
致谢 |
(4)课程思政视域下高中数学教学研究 ——以“函数模型的应用”专题为例(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 问题的提出 |
1.2 核心概念界定 |
1.2.1 课程思政 |
1.2.2 函数模型 |
1.3 研究目的与意义 |
1.3.1 研究目的 |
1.3.2 理论意义 |
1.3.3 实践意义 |
1.4 研究思路与方法 |
1.4.1 研究思路 |
1.4.2 研究方法 |
1.5 研究重点、难点及创新点 |
1.5.1 研究重点 |
1.5.2 研究难点 |
1.5.3 研究创新点 |
1.6 论文结构 |
第二章 文献综述、理论基础与框架 |
2.1 文献综述 |
2.1.1“课程思政”的研究现状 |
2.1.2“课程思政”在数学教学中的体现 |
2.1.3 函数模型的教学价值 |
2.1.4 函数模型的教学设计 |
2.2 理论基础 |
2.2.1 马克思关于人的全面发展理论 |
2.2.2 认知负荷理论 |
2.3 理论框架 |
2.3.1 课程思政视域下高中数学教学研究理论框架 |
2.3.2 高中数学课程思政维度划分的理论框架 |
第二章 研究设计 |
3.1 研究假设 |
3.2 研究对象 |
3.3 研究工具 |
3.3.1 教师访谈提纲 |
3.3.2 学生调查问卷 |
3.3.3 学生前测试卷 |
3.3.4 学生后测试卷 |
3.3.5 学生后测问卷 |
3.4 数据处理 |
第四章 “函数模型的应用”专题教学设计 |
4.1 教学设计目标 |
4.2 教学设计构思 |
4.3 教学设计原则 |
4.4 教学时间安排与进度 |
4.5 教学设计示例 |
第五章 “函数模型的应用”专题教学问卷与访谈分析 |
5.1 课程思政的融入对学生成绩的影响结果分析 |
5.2 课程思政视域下高中数学教学情况的总体特征 |
5.3 课程思政视域下专题教学的前后差异比较分析 |
5.3.1 前后测总体数据的配对样本t检验分析 |
5.3.2 数学品格维度的前后测数据的配对样本t检验分析 |
5.3.3 文化素养维度的前后测数据的配对样本t检验分析 |
5.3.4 价值理念维度的前后测数据的配对样本t检验分析 |
5.4 教师访谈结果分析 |
第六章 讨论、结论与建议 |
6.1 讨论 |
6.1.1 关于课程思政的融入对学生成绩影响的讨论 |
6.1.2 关于专题教学整体实践效果的讨论 |
6.1.3 关于课程思政各个子维度的实践效果比较研究 |
6.2 结论 |
6.3 建议 |
6.3.1 丰富课程思政交流形式,提升教师思政育人意识 |
6.3.2 以数学为基点联系社会热点,拓宽教师思政储备 |
6.3.3 分阶段制定思政育人目标,学科间共享思政成果 |
6.3.4 利用信息技术创新课堂形式,于互动中达到育人实效 |
6.3.5 弘扬优秀文化与先进事迹,营造良好思政环境 |
6.3.6 质性评价与定量评价相结合,细化思政考核方式 |
6.4 不足与展望 |
参考文献 |
附录 |
附录一 教师访谈提纲(教学设计前) |
附录二 教师访谈提纲(教学实践后) |
附录三 学生预测试调查问卷(第一版) |
附录四 学生预测试调查问卷(第二版) |
附录五 学生正式前测调查问卷 |
附录六 学生正式后测调查问卷 |
附录七 专家意见表 |
附录八 专家评价表 |
附录九 学生后测试题 |
致谢 |
(5)基于APOS理论的平面向量教学研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
一、研究背景 |
(一)平面向量在高中数学中的地位 |
(二)平面向量的教育价值 |
(三)平面向量内容教学中存在的问题 |
(四)APOS理论应用于数学教学的重要意义 |
二、研究内容 |
三、研究意义 |
(一)理论意义 |
(二)实践意义 |
四、研究方法 |
(一)文献研究法 |
(二)问卷调查法 |
(三)访谈法 |
(四)案例分析法 |
五、论文创新之处 |
第二章 文献综述 |
一、APOS理论研究现状 |
(一)APOS理论国外研究现状 |
(二)APOS理论国内研究现状 |
二、平面向量研究现状 |
(一)平面向量国外研究现状 |
(二)平面向量国内研究现状 |
三、文献综述评述 |
第三章 APOS理论应用于平面向量教学的可行性、必要性分析 |
一、Dubinsky的 APOS理论 |
(一)APOS理论的来源 |
(二)APOS理论的四阶段模型 |
(三)APOS理论的特点 |
二、平面向量教材分析与《课程标准》解读 |
(一)平面向量的教材分析 |
(二)《课程标准》对平面向量内容的要求 |
三、平面向量教学中应用APOS理论的可行性分析 |
(一)可行性分析——教学内容的“二重性” |
(二)可行性分析——教材对比分析 |
(三)可行性分析——《课程标准》解读 |
四、平面向量教学中应用APOS理论的必要性分析 |
第四章 平面向量教与学现状调查研究 |
一、学生学习平面向量现状的调查 |
(一)研究对象的选择 |
(二)平面向量理解水平划分 |
(三)测试卷的编制 |
(四)测试卷信效度检验 |
(五)测试实施过程 |
二、平面向量教学现状的调查 |
(一)访谈对象的选择 |
(二)访谈问题 |
(三)访谈实施过程 |
三、调查结果统计与分析 |
(一)学生平面向量的学习现状分析 |
(二)教师平面向量教学现状的分析 |
(三)学生存在问题的归因分析 |
第五章 基于APOS理论的平面向量教学研究 |
一、APOS理论模式下的教学案例分析 |
(一)教学案例个案分析 |
(二)教学案例比较分析 |
二、基于APOS理论的平面向量教学策略 |
(一)操作阶段的教学策略 |
(二)过程阶段的教学策略 |
(三)对象阶段的教学策略 |
(四)图式阶段的教学策略 |
三、APOS理论下的平面向量教学设计 |
(一)基于APOS理论的教学目标设计 |
(二)基于APOS理论的教学方法设计 |
(三)基于APOS理论的教学环节设计 |
(四)基于APOS理论的教学评价设计 |
四、APOS理论下的平面向量教学设计案例 |
(一)《平面向量的概念》教学设计 |
(二)《向量的数量积》教学设计 |
(三)《平面向量基本定理》教学设计 |
(四)《余弦定理》教学设计 |
第六章 研究结论与展望 |
一、研究结论 |
二、研究不足 |
三、研究展望 |
注释 |
参考文献 |
附录1 平面向量测试卷 |
附录2 教师访谈提纲 |
攻读硕士期间所发表的学术论文 |
致谢 |
(6)基于APOS理论的高中生物学“遗传与进化”模块核心概念教学实践研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
第一节 研究背景 |
一、新课程标准明确倡导概念教学 |
二、学生构建核心概念的需要 |
三、生物学核心概念教学中存在不足 |
四、APOS概念学习理论与核心概念教学结合具有合理性 |
第二节 研究目的及意义 |
一、研究目的 |
二、研究意义 |
第三节 研究内容 |
一、APOS理论与生物学核心概念教学的理论研究 |
二、高中生物学教师核心概念教学现状及学生生物学概念学习现状的调查分析 |
三、APOS理论指导下的高中生物学核心概念教学设计探究指导教学实施 |
四、基于APOS理论的核心概念教学实践研究 |
五、基于教学实践,总结反思给出适当教学建议 |
第四节 研究思路 |
第五节 研究方法 |
一、文献法 |
二、观察法 |
三、调查法 |
四、实验研究法 |
五、统计分析法 |
第二章 研究概述 |
第一节 概念界定 |
一、APOS理论 |
二、生物学概念 |
三、生物学核心概念 |
四、核心概念教学 |
第二节 APOS理论及核心概念教学的国内外研究概述及现状 |
一、APOS理论来源 |
二、APOS理论四阶段模型 |
三、国内外关于APOS理论的研究现状 |
四、国内外关于核心概念教学的研究现状 |
第三节 研究的理论基础 |
一、皮亚杰的认知发展理论 |
二、建构主义的学习理论 |
三、人本主义学习理论 |
第三章 高中生物学核心概念教学调查研究结果及分析 |
第一节 学生生物学概念学习现状的问卷调查及分析 |
一、调查目的 |
二、调查对象及过程 |
三、调查工具 |
四、调查结果及分析 |
第二节 核心概念教学开展及理论认识情况的访谈调查及分析 |
一、调查目的 |
二、调查对象 |
三、调查工具 |
四、调查结果及分析 |
第三节 调查结果的综合分析 |
一、学生期待自主建构的概念学习方式 |
二、核心概念教学的开展可以有更多的理论支持 |
三、APOS理论与生物学核心概念教学结合具有可行性 |
第四章 基于APOS理论的高中生物学核心概念教学设计探究 |
第一节 高中生物学核心概念的教学内容梳理 |
第二节 APOS理论指导下的核心概念教学内涵 |
一、APOS理论指导下的核心概念教学知识观 |
二、APOS理论指导下的核心概念教学学生观 |
三、APOS理论指导下的核心概念教学教师观 |
第三节 APOS理论指导下的生物学概念教学设计原则 |
一、教学设计要实现教学内容的可探究性及与生活的联系性 |
二、教学设计要确保教学过程的科学性和系统性 |
三、教学设计要体现学生的主体能动性和教师的主导性 |
第四节 APOS理论指导下的生物学概念教学各阶段教学设计要领 |
一、活动阶段 |
二、过程阶段 |
三、对象阶段 |
四、图式阶段 |
第五节 建构基于APOS理论的教学实施过程中教学模式环节 |
一、活动阶段:概念的切入与感知 |
二、过程阶段:概念的领悟与形成 |
三、对象阶段:概念的提炼及表征 |
四、图式阶段:概念的系统与联结 |
第六节 基于APOS理论的生物学概念教学设计案例 |
教学案例一:减数分裂概念教学设计 |
第五章 基于APOS理论的高中生物学核心概念教学实践研究 |
第一节 研究过程设计及实施 |
一、研究目的 |
二、研究工具 |
三、研究对象 |
四、研究问题假设及变量控制 |
五、研究实践过程 |
第二节 研究结果与分析 |
一、基于APOS理论的核心概念教学使学生成绩提高 |
二、基于APOS理论的核心概念教学使学生学习态度得到改善 |
三、基于APOS理论的核心概念教学对学生学习方法的改善效果不显着 |
四、基于APOS理论的核心概念教学使学生认知能力得到发展 |
五、基于APOS理论的核心概念教学使学生课堂表现积极 |
第六章 总结与展望 |
第一节 研究总结 |
一、APOS理论下的生物学核心概念教学符合学生期待的教学方式 |
二、基于APOS理论建构教学过程模式环节对指导教学设计有参考意义 |
三、APOS理论下的核心概念教学方式能有效提高学生的学习水平及课堂参与度 |
第二节 创新之处 |
一、落实核心素养,内容聚焦大概念 |
二、打破学科壁垒,实现智慧共享 |
第三节 教学建议 |
一、教师应根据实际情况灵活参考基于APOS理论建构的教学实践过程中的模式环节 |
二、教师应明确APOS理论的核心在于学生对概念的自主建构 |
三、教师应注重对教学的评价 |
第三节 研究的不足之处与展望 |
一、研究的不足之处 |
二、研究的展望 |
参考文献 |
附录 |
附录A 学生对生物学概念学习现状调查问卷 |
附录B 高中生物学教师关于核心概念教学开展及理论认知情况访谈纲要 |
附录C 学生生物学核心概念学习水平评价量表 |
附录D 学生课堂学习情况观察量表 |
附录E 教学案例二:DNA的结构概念教学设计 |
附录F 教学案例三:遗传信息的转录概念教学设计 |
攻读学位期间发表的学位论文和研究成果 |
致谢 |
(7)“高观点”下高中导数解题及教学研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究的背景 |
1.1.1 数学教师专业素养发展的需要 |
1.1.2 优秀高中学生自身发展的需求 |
1.1.3 导数在高中数学教学及高考中的地位 |
1.2 核心名词界定 |
1.2.1 高观点 |
1.2.2 导数 |
1.2.3 数学教学 |
1.2.4 解题 |
1.3 研究的内容和意义 |
1.3.1 研究的内容 |
1.3.2 研究的意义 |
1.4 研究的思路 |
1.4.2 研究计划 |
1.4.3 研究的技术路线 |
1.5 论文的结构 |
第2章 文献综述 |
2.1 文献搜集 |
2.2 高观点下中学数学的研究现状 |
2.2.1 国外研究的现状 |
2.2.2 国内的研究现状 |
2.3 高观点下高中导数的研究现状 |
2.3.1 国外研究的现状 |
2.3.2 国内研究的现状 |
2.4 文献述评 |
2.5 小结 |
第3章 研究设计 |
3.1 研究的目的 |
3.2 研究的方法 |
3.2.1 文献研究法 |
3.2.2 问卷调查法 |
3.2.3 案例研究法 |
3.3 研究工具及研究对象选取 |
3.4 研究伦理 |
3.5 小结 |
第4章 调查研究及结果分析 |
4.1 教师调查问卷的设计及结果分析 |
4.1.1 调查问卷设计 |
4.1.2 实施调查 |
4.1.3 调查结果分析 |
4.1.3.1 问卷的信度分析 |
4.1.3.2 问卷的效度分析 |
4.1.3.3 问卷的结果分析 |
4.2 学生调查问卷的设计及结果分析 |
4.2.1 调查问卷设计 |
4.2.2 实施调查 |
4.2.3 调查结果及分析 |
4.3 调查结论 |
4.4 小结 |
第5章 “高观点”下高中导数的解题研究 |
5.1 “高观点”下高考导数试题的命题背景 |
5.1.1 以高等数学中的基本定义和性质为命题背景 |
5.1.1.1 高斯函数 |
5.1.1.2 函数的凹凸性 |
5.1.2 以高等数学中的重要定理或公式为命题背景 |
5.1.2.1 洛必达法则 |
5.1.2.2 拉格朗日中值定理 |
5.1.2.3 拉格朗日乘数法 |
5.1.2.4 柯西中值定理 |
5.1.2.5 柯西函数方程 |
5.1.2.6 泰勒公式与麦克劳林公式 |
5.1.2.7 极值的第三充分条件 |
5.1.2.8 两个重要极限 |
5.1.2.9 欧拉常数 |
5.1.3 以着名不等式为命题背景 |
5.1.3.1 伯努利不等式 |
5.1.3.2 詹森不等式 |
5.1.3.3 对数平均不等式 |
5.1.3.4 斯外尔不等式 |
5.1.3.5 惠更斯不等式 |
5.1.3.6 约当不等式 |
5.1.4 以高等数学中的重要思想方法为命题背景 |
5.1.4.1 极限思想 |
5.1.4.2 积分思想 |
5.1.4.3 (常微分)方程思想 |
5.2 “高观点”下高考导数解题中常见的四类错误 |
5.2.1 知识性错误 |
5.2.1.1 柯西中值定理的误用 |
5.2.1.2 拉格朗日中值定理的误用 |
5.2.1.3 多元函数求最值,不注意边界情况 |
5.2.1.4 不注意洛必达法则使用的前提 |
5.2.2 逻辑性错误 |
5.2.2.1 循环论证 |
5.2.2.2 混淆充分条件和必要条件的逻辑关系 |
5.2.3 策略性错误 |
5.2.4 心理性错误 |
5.3 “高观点”下高考导数解题的方法 |
5.3.1 创设引理破难题 |
5.3.2 洛氏法则先探路 |
5.3.3 导数定义避超纲 |
5.3.4 构造函数显神通 |
5.3.5 多元偏导先找点 |
5.4 “高观点”下高考导数解题研究的案例 |
5.4.1 “高观点”视角研究解题方法 |
5.4.2 “高观点”视角研究试题的命制 |
5.5 小结 |
第6章 “高观点”下高中导数的教学研究 |
6.1 “高观点”下高中导数教学的教学特点 |
6.1.1 衔接性 |
6.1.2 选择性 |
6.1.3 引导性 |
6.2 “高观点”下高中导数教学的教学原则 |
6.2.1 严谨性原则 |
6.2.2 直观性原则 |
6.2.3 因材施教原则 |
6.2.4 量力性原则 |
6.3 “高观点”下高中导数教学的教学策略 |
6.3.1 开发例题,拓展升华策略 |
6.3.2 引入四规则,知识呈现多样化策略 |
6.3.3 先实践操作,后说理策略 |
6.3.4 融合信息技术,直观解释策略 |
6.3.5 引导方向,自主学习策略 |
6.4 “高观点”下高中导数的教学案例 |
6.4.1 常微分方程视角下的教学案例 |
6.4.2 微积分视角下的教学案例 |
6.4.3 “泰勒公式”的教学案例 |
6.5 小结 |
第7章 结论与反思 |
7.1 研究的结论 |
7.2 研究的不足及展望 |
7.3 结束语 |
参考文献 |
附录 A 教师调查问卷 |
附录 B 学生调查问卷 |
攻读学位期间发表的论文和研究成果 |
致谢 |
(8)职前数学教师专业知识结构及水平的实证研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
第一节 研究背景 |
第二节 研究问题 |
第三节 研究意义 |
第四节 论文结构 |
第二章 文献综述 |
第一节 教师知识 |
一.知识的内涵及分类 |
二.教师知识的分类 |
第二节 数学教师知识 |
一.数学教师学科知识 |
二.数学教师学科教学知识 |
三.数学教师知识相关文献的量化分析 |
第三节 职前数学教师知识 |
一.职前数学教师知识的现状及来源 |
二.职前数学教师知识中某类具体知识 |
三.职前数学教师综合性知识和技能 |
四.中外职前数学教师知识的对比 |
第四节 本章小结 |
第三章 研究设计与实施 |
第一节 研究思路与方法 |
一.研究思路 |
二.研究方法 |
第二节 相关概念界定 |
一.教师知识 |
二.数学教师专业知识 |
三.职前教师 |
四.知识结构 |
第三节 理论基础与框架 |
一.数学教师专业知识分类框架构建 |
二.职前数学教师专业知识分析层次建构 |
第四节 研究的具体过程 |
第四章 教师视角下的合格数学教师专业知识结构 |
第一节 教师视角下合格数学教师专业知识结构描述分析 |
第二节 教师视角下合格数学教师专业知识结构聚类分析 |
第三节 不同群体教师对合格数学教师各类知识权重看法的量化分析 |
一.不同教龄教师对合格数学教师各类知识权重看法的差异分析 |
二.不同职称教师对合格数学教师各类知识权重看法的差异分析 |
三.不同称号教师对合格数学教师各类知识权重看法的差异分析 |
四.不同学历教师对合格数学教师各类知识权重看法的差异分析 |
第四节 教师视角下合格数学教师各类知识权重看法的质化分析 |
第五节 本章小结 |
第五章 职前数学教师专业知识现状分析 |
第一节 职前数学教师专业知识掌握情况的水平划分 |
一.职前数学教师专业知识测试成绩整体描述 |
二.职前数学教师测试总成绩的水平分布 |
三.职前数学教师主观题作答情况的水平分析 |
第二节 职前数学教师专业知识的实际结构 |
第三节 不同类型学校职前数学教师专业知识得分情况的差异分析 |
一.不同类型学校职前数学教师总成绩的差异分析 |
二.不同类型学校职前数学教师各类知识得分的差异分析 |
第四节 不同性别职前数学教师得分情况的差异分析 |
一.不同性别职前数学教师总成绩的差异分析 |
二.不同性别职前数学教师各类知识得分的差异分析 |
第五节 各类数学专业知识之间的关系分析 |
一.各类数学专业知识得分之间的相关性分析 |
二.数学学科知识对数学教学知识的影响分析 |
三.数学学科知识对数学课程知识的影响分析 |
第六节 本章小结 |
第六章 职前数学教师专业知识实际结构与期望结构的对比分析 |
第一节 职前数学教师专业知识实际结构与期望结构的整体比较 |
第二节 不同水平下职前数学教师专业知识实际结构与期望结构的比较 |
一.前水平的职前数学教师专业知识结构的比较 |
二.识记水平的职前数学教师专业知识结构的比较 |
三.关联水平的职前数学教师专业知识结构的比较 |
四.综合水平的职前数学教师专业知识结构的比较 |
第三节 职前数学教师专业知识结构的讨论 |
第四节 本章小结 |
第七章 结论与建议 |
第一节 研究的结论 |
第二节 研究的建议 |
第三节 研究的局限性与展望 |
参考文献 |
附录 |
附录1 中学数学教师知识结构状况调查与访谈提纲 |
附录2 数学教师专业知识分类框架 |
附录3 中学数学教师知识权重调查问卷 |
附录4 教师资格考试2014-2018 试题汇总 |
附录5 职前数学教师专业知识与基本能力测试 |
附录6 职前数学教师专业知识与基本能力测试参考答案 |
附录7 职前数学教师专业知识结构及其培养策略访谈提纲 |
后记 |
在学期间公开发表论文及着作情况 |
(9)面向教师教育的数学知识研究 ——以S市高中数学教研员为例(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究背景 |
1.1.1 教师教育者的专业发展需要关注 |
1.1.2 数学教师教育者的研究值得重视 |
1.1.3 数学教师教育者的专业知识有待探索 |
1.2 研究问题 |
1.3 研究意义 |
1.3.1 理论意义 |
1.3.2 实践意义 |
1.4 论文结构 |
第2章 文献述评 |
2.1 数学教师教育者的专业知识 |
2.1.1 数学教师教育者的专业知识框架 |
2.1.2 数学教师教育者的专业知识测评 |
2.1.3 文献小结 |
2.2 数学教师教育者的专业发展 |
2.2.1 数学教师教育者的专业发展框架 |
2.2.2 数学教师教育者的专业发展调查 |
2.2.3 文献小结 |
2.3 数学教师教育者的工作实践 |
2.3.1 数学教师教育课堂的学习任务框架 |
2.3.2 数学教师教育课堂的学习任务实践 |
2.3.3 文献小结 |
2.4 文献述评总结 |
第3章 研究方法 |
3.1 研究设计 |
3.1.1 文献分析与框架确立 |
3.1.2 问卷调查与深度访谈 |
3.1.3 现场观察与案例分析 |
3.2 研究对象 |
3.2.1 专家论证对象 |
3.2.2 问卷调查对象 |
3.2.3 深度访谈对象 |
3.2.4 案例研究对象 |
3.3 研究工具 |
3.3.1 论证手册 |
3.3.2 调查问卷 |
3.3.3 访谈提纲 |
3.3.4 观察方案 |
3.4 数据收集 |
3.4.1 专家论证 |
3.4.2 问卷调查 |
3.4.3 深度访谈 |
3.4.4 现场观察 |
3.5 数据分析 |
3.5.1 专家论证 |
3.5.2 问卷与访谈 |
3.5.3 现场观察 |
第4章 研究结果(一):面向教师教育的数学知识框架 |
4.1 文献分析 |
4.1.1 已有框架选取 |
4.1.2 相关成分析取 |
4.1.3 相关类别编码 |
4.2 框架构建 |
4.2.1 相关类别合并 |
4.2.2 相应成分生成 |
4.2.3 初步框架构建 |
4.3 框架论证 |
4.3.1 第一轮论证 |
4.3.2 第二轮论证 |
4.3.3 第三轮论证 |
第5章 研究结果(二):高中数学教研员具备的面向教师教育的数学知识 |
5.1 学科内容知识 |
5.1.1 一般内容知识 |
5.1.2 专门内容知识 |
5.1.3 关联内容知识 |
5.2 教学内容知识 |
5.2.1 内容与学生知识 |
5.2.2 内容与教学知识 |
5.2.3 内容与课程知识 |
5.3 高观点下的数学知识 |
5.3.1 学科高等知识 |
5.3.2 学科结构知识 |
5.3.3 学科应用知识 |
5.4 数学哲学知识 |
5.4.1 本体论知识 |
5.4.2 认识论知识 |
5.4.3 方法论知识 |
5.5 总体分析 |
5.5.1 学科内容知识 |
5.5.2 教学内容知识 |
5.5.3 高观点下的数学知识 |
5.5.4 数学哲学知识 |
第6章 研究结果(三):数学教研活动中反映的面向教师教育的数学知识 |
6.1 案例1 |
6.1.1 第一轮观察:平均值不等式 |
6.1.2 第二轮观察:对数的概念 |
6.1.3 案例1 总体分析 |
6.2 案例2 |
6.2.1 第一轮观察:幂函数的概念 |
6.2.2 第二轮观察:函数的基本性质 |
6.2.3 案例2 总体分析 |
6.3 案例3 |
6.3.1 第一轮观察:幂函数的概念 |
6.3.2 第二轮观察:出租车运价问题 |
6.3.3 案例3 总体分析 |
6.4 案例4 |
6.4.1 第一轮观察:反函数的概念 |
6.4.2 第二轮观察:反函数的图像 |
6.4.3 案例4 总体分析 |
6.5 跨案例分析 |
6.5.1 学科内容知识 |
6.5.2 教学内容知识 |
6.5.3 高观点下的数学知识 |
6.5.4 数学哲学知识 |
6.5.5 案例总体分析 |
第7章 研究结论及启示 |
7.1 研究结论 |
7.1.1 面向教师教育的数学知识框架 |
7.1.2 高中数学教研员具备的面向教师教育的数学知识 |
7.1.3 高中数学教研活动中反映的面向教师教育的数学知识 |
7.2 研究启示 |
7.2.1 教师教育者的专业标准制订需要关注学科性 |
7.2.2 数学教师教育者的专业培训需要提升针对性 |
7.2.3 数学教师专业发展项目规划需要增加多元性 |
7.3 研究局限 |
7.4 研究展望 |
7.4.1 拓展数学教师教育者的专业知识研究 |
7.4.2 深入数学教师教育者的专业发展研究 |
7.4.3 延伸数学教师教育者的工作实践研究 |
参考文献 |
附录 |
附录1 论证手册(第一轮) |
附录2 论证手册(第二轮) |
附录3 论证手册(第三轮) |
附录4 调查问卷(第一版) |
附录5 调查问卷(第二版) |
附录6 调查问卷(第三版) |
附录7 调查问卷(第四版) |
附录8 调查问卷(第五版) |
附录9 访谈提纲 |
附录10 观察方案 |
作者简历及在学期间所取得的科研成果 |
致谢 |
(10)高中函数概念“双线教学法”初探(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
第一节 选题缘由 |
第二节 研究背景 |
一、高中函数学习的重要性 |
二、高中数学教学的全新要求 |
第三节 研究目的和意义 |
一、顺应趋势,更加符合新课改的客观要求 |
二、联系实际,更加符合教师教和学生学的需要 |
第四节 研究现状及文献综述 |
一、文献数据调查 |
二、相关文献综述 |
第五节 研究思路和方法 |
一、研究思路 |
二、研究方法 |
第二章 高中函数概念“双线教学”的研究基础 |
第一节 核心概念 |
一、高中函数概念 |
二、高观点 |
三、数学文化 |
四、“双线教学” |
第二节 理论基础 |
一、数学基础 |
二、数学教育基础 |
三、哲学基础 |
第三节 函数相关内容概述 |
一、函数思想 |
二、函数的美学意义 |
三、函数的应用举例 |
第四节 数学文化在试题中的考查方式 |
一、外显式 |
二、内隐式 |
三、直观式 |
第三章 高中函数概念“双线教学”的创设环境 |
第一节 集合论思想在中小学阶段的渗透举例 |
一、平面几何中的定义 |
二、不等式(组)的解集 |
三、统计和分类 |
第二节 高中函数概念教学的现状调查 |
一、调查的目的 |
二、调查的设计 |
三、调查的对象 |
四、调查的结果 |
第三节 高中函数概念“双线教学”的可行性分析 |
一、顺应学生认知发展需求 |
二、顺应学生一般能力发展需求 |
三、顺应学生个性化发展需求 |
第四节 高中函数概念“双线教学”的必要性分析 |
一、新课标与学生全面发展的迫切需要 |
二、帮助教师更好教学的迫切需要 |
三、解决学生学习困惑的迫切需要 |
第四章 高中函数概念“双线教学”的设计实施 |
第一节 新课标及函数概念教学要求分析 |
一、新课标的基本理念 |
二、新课标对函数教学的基本要求 |
三、新旧课标中关于函数概念的教学要求比较 |
第二节 各版本教材函数内容对比分析 |
一、版本的选取 |
二、内容的对比 |
第三节 高中函数概念“双线教学”的设计 |
一、教材分析 |
二、学情分析 |
三、教学目标 |
四、教学重难点 |
五、教学过程 |
第四节 高中函数概念“双线教学”的实施 |
一、实施建议 |
二、实施过程 |
第五章 高中函数概念“双线教学”的实践结果 |
第一节 实践数据的比较与分析 |
一、关于数学学习兴趣的数据分析 |
二、关于数学考试成绩的数据分析 |
第二节 高中函数概念“双线教学”的不足和建议 |
一、研究的不足之处 |
二、教学建议 |
参考文献 |
附录 |
附录1 |
附录2 |
附录3 |
致谢 |
读硕期间发表的论文 |
四、高等数学教学中数学模型案例运用初探(论文参考文献)
- [1]案例教学在高等数学教学中的运用研究[J]. 白守英. 成才之路, 2021(27)
- [2]案例教学在高等数学教学中的应用研究[J]. 乔剑敏,李沃源,张军,马生昀. 高等数学研究, 2021(04)
- [3]“课程思政”视域下初中数学教学设计研究 ——以函数教学为例[D]. 刘家新. 天津师范大学, 2021(09)
- [4]课程思政视域下高中数学教学研究 ——以“函数模型的应用”专题为例[D]. 孙贺. 天津师范大学, 2021(10)
- [5]基于APOS理论的平面向量教学研究[D]. 王雪. 哈尔滨师范大学, 2021(08)
- [6]基于APOS理论的高中生物学“遗传与进化”模块核心概念教学实践研究[D]. 邹梦姗. 云南师范大学, 2021(09)
- [7]“高观点”下高中导数解题及教学研究[D]. 李超. 云南师范大学, 2021(08)
- [8]职前数学教师专业知识结构及水平的实证研究[D]. 王改珍. 东北师范大学, 2021(09)
- [9]面向教师教育的数学知识研究 ——以S市高中数学教研员为例[D]. 沈中宇. 华东师范大学, 2021(08)
- [10]高中函数概念“双线教学法”初探[D]. 王楠. 喀什大学, 2021(07)