问:初中数学论文 论全等三角形 急~
- 答:经过分析,三角形全等条件如下
“SAS”也叫“边角边”,
意思是两个三角形中,有两条边和他们的夹角对应相等时,这两个三角形全等;
“SSS”也叫“边边边”,
意思是两个三角形中,有三条边对应相等时,这两个三角形全等;
“ASA”也叫“角边角”,
意思是两个三角形中,有两个角和他们的夹边对应相等时,这两个三角形全等;
“AAS”也叫“角角边”,
意思是两个三角形中,有两个角和其中一个角的对边对应相等时,这两个三角形全等; - 答:1三边全相等
2两边和一夹角分别相等
3三角分别相等和一对相等
问:初2数学中的三角形全等谁能帮我讲一下
- 答:其实就是利用边和角的相等关系来证明三角行全等
得到三角形的其他关系
方法有边边边
边角边
角角边
角边角 - 答:全等有SAS,SSS,AAS.ASA只要你找对了就行啦.我今年初三,初二的数学不难学,学好一点哦,给初三打好基础,你学好了初二,你的初三就没那么辛苦.
问:全等三角形的小论文
- 答:点“点击在新窗口中打开图片” 可以下栽
问:初二的数学 全等三角形的判定 求解!!
- 答:1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。
2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
4、有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)
5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
注意:在全等的判定中,没有AAA角角角和SSA(特例:直角三角形为HL,属于SSA)边边角,这两种情况都不能唯一确定三角形的形状。
6.三条中线(或高、角分线)分别对应相等的两个三角形全等。
问:关于初一全等三角形的数学论文!
- 答:现已知BC=EF,AF=DC,AB=DE,请证明∠EFD=∠BCA(在同一平面内) 证明: 因为AF= DC ( 已知)
所以AF+ FC=DC+ FC
所以 DF= AC
在 △DEF和△ABC
因为 AC=DF (已证)
因为 AB=DE (已知)
有因为 DC=EF (已知)
所以△ABC≌△DEF (SSS)
因为∠EFD=∠BCA ( 全等三角形的对应角相等)
这是比较基础的一道几何证明题。。
以上证明是用“边边边”来证明的,这是全等三角形证明的最简单的方法。 - 答:还有一个方法,对于直角三角形,可用HL,即一条直角边和斜边对应相等的三角形是全等三角形。